Skip to main content
Log in

Hydrodynamics and mass exchange in gas-liquid slug flow in microchannels

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The present state of hydrodynamics and mass transfer studies in segmented gas-liquid flow in microchannels has been analyzed. It has been shown that such parameters as gas bubble velocity, gas hold-up, relative gas bubble length, pressure drop, mass transfer coefficients from gas bubbles to liquid slugs and to liquid film, as well as mass transfer coefficient from liquid to channel wall can be satisfactorily predicted. Nevertheless, some correlations were obtained under definite conditions and should be summarized. The purpose of further research is to develop reliable methods for calculation of mass transfer coefficients as functions of channel geometry, phase properties, and phase velocities in mini- and microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

phase contact surface area, m2/m3

A b :

cross-sectional area of a bubble, m2

A c :

cross-sectional area of a capillary, m2

A f :

cross-sectional area of a film, m2

C 1 :

dimensionless constant

C 0 :

dimensionless constant of the slipp model

d c :

capillary diameter, m

D :

diffusion coefficient, m2 s−1

g :

gravity, m s−1

J :

dimensionless constant of the motion of the fastest-moving liquid elements relative to a bubble, reduced to the mean velocity of liquid slug

k :

mass-transfer coefficient, m s−1

L :

capillary length, m

L f :

liquid film length, m

L s :

reduced length of liquid slug, m

L UC :

cell length, m

n :

dimensionless coefficient

N UC :

number of cells along the capillary, rel. units

p :

pressure, Pa

Δp trans :

pressure drop in a capillary, associated with change of liquid slug velocity profile, Pa

ΔpΔF :

pressure drop associated with new surface formation on bubble motion, Pa

Q f :

liquid film mean volumetric flow rate, m3 s−1

q b :

gas volumetric flow rate due to bubble motion (local), m3 s−1

q f :

liquid film volumetric flow rate (local), m3 s−1

q s :

liquid slug volumetric flow rate (local), m3 s−1

R :

capillary radius, m

R b :

bubble radius, m

t f :

contact time of gas bubble with liquid film s

u 1 :

local medium velocity, m s−1

U b :

bubble velocity, m s−1

U f :

liquid film velocity, m s−1

U G :

gas velocity reduced to the total capillary cross-sectional area, m s−1

U L :

liquid velocity reduced to the total capillary cross-sectional area, m s−1

U s :

liquid slug velocity, reduced to the total capillary cross-sectional area (two-phase flow velocity), m s−1

w :

relative bubble velocity, m s−1

w b :

slip velocity between bubbles and the stagnant liquid, m s-1

x :

axial coordinate, m

β:

gas volumetric flow fraction, rel. units

γ:

angle between the vector of two-phase flow velocity in a capillary U s and the vector of gravity g

γ m :

roots of the second-order Bessel function: J 2(γ) = 0

δ:

film thickness surrounding a bubble, m

ɛA :

relative bubble surface area, rel. units

ɛL :

relative bubble length, rel. units

ɛV :

gas void fraction, rel. units

η:

ratio of bubble velocity to two-phase flow velocity, η = U b/U s, rel. units

μ:

dynamic viscosity, Pa s

ν:

kinematic viscosity coefficient, m2 s−1

ρ:

dencity, kg m−3

σ:

interfacial tension, N m−1

\( Ca = \frac{{\mu _1 U_b }} {\sigma } \) :

modified Bond number

\(Ca = \frac{{\mu _1 U_b }} {\sigma }\) :

capillary number

\( Ca_s = \frac{{\mu _1 U_s }} {\sigma } \) :

capillary number calculated from U s

Ca*:

critical capillary number

\( Fo = \frac{{Dt_f }} {{\delta ^2 }} \) :

Fourier criterion reduced to liquid film thickness

\( Gr = \frac{L} {{d_c }}\frac{1} {{\operatorname{Re} Sc}} = \frac{L} {{d_c }}\frac{1} {{Pe}} \) :

Gretz criterion

\( Pe = \operatorname{Re} Sc = \frac{{U_s d_c }} {D} \) :

Peclet number

\( Re = \frac{{\rho _1 U_s d_c }} {{\mu _1 }} \) :

Reynolds number

\( Sh = \frac{{kd_c }} {D} \) :

Sherwood number

\( Sc = \frac{{\nu _1 }} {D} \) :

Schmidt number

\( We = \frac{{\rho _1 U_s^2 d_c }} {\sigma } \) :

Weber number

1:

continuous medium (liquid)

2:

disperse medium (gas)

a:

gas-liquid system used to obtain Eq. (17)

b:

bubble

c:

capillary

d:

gas-liquid system different from that used to obtain Eq. (17)

f:

film

fs:

liquid-solid film

gl:

gas-liquid

gf:

gas-liquid film

gs:

gas-solid

g, G:

gas

ls:

liquid-solid

s:

liquid slug

tot:

total

References

  1. Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering. Processing and Plants, Weinheim: Wiley-VCH, 2005, p. 288.

    Book  Google Scholar 

  2. Hessel, V., Angeli, P., Gavriilidis, A., and Löwe, H., Ind. Eng. Chem. Res., 2005, vol. 44, no. 25, pp. 9750–9769.

    Article  CAS  Google Scholar 

  3. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., and Heiszwolf, J.J., Chem. Eng. Sci., 2005, vol. 60, no. 22, pp. 5895–5916.

    Article  CAS  Google Scholar 

  4. Borovinskaya, E.S. and Reshetilovskii, V.P., Khim. Prom-st’, 2008, vol. 85, no. 5, pp. 217–247.

    CAS  Google Scholar 

  5. Renken, A., Hessel, V., Lob, P., et al., Chem. Eng. Proc., 2007, vol. 46, no. 9, pp. 840–845.

    Article  CAS  Google Scholar 

  6. Gao, P., Rebrov, E.V., Schouten, J.C., et al., MRS Fall Meeting, Boston, 2009.

  7. He, P., Haswell, S.J., and Fletcher, P.D.I., Lab Chip., 2004, vol. 4, no. 1, pp. 38–41.

    Article  CAS  Google Scholar 

  8. Bauer, T., Shubert, M., Lange, R., and Abiev, R.Sh., Zh. Prikl. Khim., 2006, vol. 79, no. 7, pp. 1047–1056.

    CAS  Google Scholar 

  9. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., and Turek, T., AIChE J., 2004, vol. 50, no. 11, pp. 2918–2938.

    Article  CAS  Google Scholar 

  10. Rebrov, E.V., Khim. Tekhnol., 2009, vol. 10, no. 10, pp. 595–604.

    Google Scholar 

  11. Edvinsson, R. K. and Irandoust, S., AIChE J., 1996, vol. 42, no. 7, pp. 1815–1823.

    Article  CAS  Google Scholar 

  12. Taha, T. and Cui, Z.F., Chem. Eng. Sci., 2004, vol. 59, no. 6, pp. 1181–1190.

    Article  CAS  Google Scholar 

  13. Taha, T. and Cui, Z.F., Ibid., 2006, vol. 61, no. 2, pp. 676–687.

    Article  CAS  Google Scholar 

  14. Van Baten, J.M. and Krishna, R., Ibid., 2005, vol. 60, no. 4, pp. 1117–1126.

    Article  Google Scholar 

  15. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Kleijn, C.R., and Heiszwolf, J.J., AIChE J., 2005, vol. 51, no. 9, pp. 2428–2440.

    Article  CAS  Google Scholar 

  16. Tsoligkas, A.N., Simmons, M.J.H., and Wood, J., Chem. Eng. Sci., 2007, vol. 62, no. 16, pp. 4365–4378.

    Article  CAS  Google Scholar 

  17. Wörner, M., Ghidersa, B., and Onea, A., Int. J. Heat Fluid Flow, 2007, vol. 28, no. 1, pp. 83–94.

    Article  Google Scholar 

  18. Onea, A., Wörner, M., and Cacuci, D.G., Chem. Eng. Sci., 2009, vol. 64, no. 7, pp. 1416–1435.

    Article  CAS  Google Scholar 

  19. Wörner, M., 7th Int. Conf. on Multiphase Flow, Tampa, 2010.

  20. Bercic, G. and Pintar, A., Chem. Eng. Sci., 1997, vol. 52, nos. 21–22, pp. 3709–3719.

    CAS  Google Scholar 

  21. Abiev, R.Sh., Teor. Osnovy Khim. Tekhnol., 2008, vol. 42, no. 2, pp. 115–127.

    Google Scholar 

  22. Abiev, R.Sh., Ibid., 2009, vol. 43, no. 3, pp. 313–321.

    Google Scholar 

  23. Abiev, R.Sh, Ibid., 2010, vol. 44, no. 1, pp. 88–103.

    Google Scholar 

  24. Abiev, R.Sh., Ibid., 2011, vol. 45, no. 2, pp. 251–263.

    Google Scholar 

  25. Abiev, R.Sh. and Lavretsov, I.V., Ibid., 2011, vol. 45, no. 3, pp.170–177.

    Google Scholar 

  26. Fukano, T., Kariyasaki, A., and Ide, H., 3rd Int. Conf. on Microchannels and Minichannels, Toronto, 2005.

  27. Thulasidas, T.C., Abraham, M.A., and Cerro, R.L., Chem. Eng. Sci., 1995, vol. 50, no. 2, pp. 183–199.

    Article  CAS  Google Scholar 

  28. Liu, H., Vandu, C. O., and Krishna, R., Ind. Eng. Chem. Res., 2005, vol. 44, no. 14, pp. 4884–4897.

    Article  CAS  Google Scholar 

  29. Taylor, G.I., J. Fluid Mech., 1961, vol. 10, no. 2, pp. 161–165.

    Article  Google Scholar 

  30. Bretherton, F.P., Ibid., 1961, vol. 10, no. 2, pp. 166–188.

    Article  Google Scholar 

  31. Aussillous, P. and Quéré, D., Phys. Fluids, 2000, vol. 15, no. 10, pp. 2367–2371.

    Article  Google Scholar 

  32. Abiev, R.Sh., Abstracts of Papers, Mezhd. Konf. “Matematicheskie metody v tekhnike i technologiyakh” (Int. Conf. “Mathematical Methods in Technics and Technologies”), Pskov, 2009.

  33. Abiev, R.Sh., Abstracts of Papers, Mezhd. Konf. “Matematicheskie metody v tekhnike i technologiyakh” (Int. Conf. “Mathematical Methods in Technics and Technologies”), Saratov, 2008.

  34. Thulasidas, T.C., Abraham, M.A., and Cerro, R.L., Chem. Eng. Sci., 1997, vol. 52, no. 17, pp. 2947–2962.

    Article  CAS  Google Scholar 

  35. Tsoligkas, A.N., Simmons, M.J.H., and Wood, J., 6th Int. Conf. on Multiphase Flow, Leipzig, 2007.

  36. Mishima, K. and Hibiki, T., Int. J. Multiphase Flow, 1996, vol. 22, no. 4, pp. 703–712.

    Article  CAS  Google Scholar 

  37. Laborie, S., Cabassud, C., Durand-Bourlier, L., and Laine, J.M., Chem. Eng. Sci., 1999, vol. 54, no. 23, pp. 5723–5735.

    Article  CAS  Google Scholar 

  38. Armand, A.A. and Treshchev, G.G., Izv. Vses. Teplotekh. Inst., 1946, vol. 15, no. 1, pp. 16–23.

    Google Scholar 

  39. Kawahara, A. and Chung, P.M.-Y., Int. J. Multiphase Flow, 2002, vol. 28, no. 9, pp. 1411–1435.

    Article  CAS  Google Scholar 

  40. Chung, P.M.-Y. and Kawaji, M., Ibid., 2004, vol. 30, nos. 7–8, pp. 735–761.

    Article  CAS  Google Scholar 

  41. Heiszwolf, J.J., Engelvaart, L.B., van den Eijnden, M.T., et al., Chem. Eng. Sci., 2001, vol. 56, no. 3, pp. 805–812.

    Article  CAS  Google Scholar 

  42. Serizawa, A., Feng, Z., and Kawara, Z., Exp. Thermal Fluid Sci., 2002, vol. 26, nos. 6–7, pp. 703–714.

    Article  CAS  Google Scholar 

  43. Warnier, M.J.F., de Croon, M.H.J.M., Rebrov, E.V., and Schouten, J.C., Microfluid. Nanofluid., 2010, vol. 8, no. 1, pp. 33–45.

    Article  CAS  Google Scholar 

  44. Chalfi, T.Y. and Ghiaasiaan, S.M., Int. J. Multiphase Flow, 2008, vol. 34, no. 1, pp. 2–12.

    Article  CAS  Google Scholar 

  45. Lockhart, R.W. and Martinelli, R.C., Chem. Eng. Progr., 1949, vol. 45, no. 1, pp. 39–48.

    Google Scholar 

  46. Chisholm, D. and Laird, A.D.K., Trans. ASME, 1958, vol. 80, no. 2, pp. 276–286.

    CAS  Google Scholar 

  47. Chisholm, D., Int. J. Heat Mass Transfer, 1967, vol. 10, no. 12, pp. 1767–1778.

    Article  CAS  Google Scholar 

  48. Grolman, E., Edvinsson, R., Stankiewicz, A., and Moulijn, J., Proc. ASME Heat Transfer Div., 1996, vol. 334, no. 3, pp. 171–178.

    CAS  Google Scholar 

  49. Reinecke, N. and Mewes, D., Int. J. Multiphase Flow, 1999, vol. 25, nos. 6–7, pp. 1373–1393.

    Article  CAS  Google Scholar 

  50. Liang, S.B. and Ma, H.B., Int. Comm. Heat Mass Transfer, 2004, vol. 31, no. 3, pp. 365–375.

    Article  Google Scholar 

  51. van Steijn, V., Kreutzer, M.T., and Kleijn, C.R., Chem. Eng. J., 2007, vol. 135, pp. 159–165.

    Google Scholar 

  52. Dessimoz, A.L., Cavin, L., Renken, A., and Kiwi-Minsker, L., Chem. Eng. Sci., 2008, vol. 63, no. 16, pp. 4035–4044.

    Article  CAS  Google Scholar 

  53. de Tezanos Pinto, M., Abraham, M.A., and Cerro, R.L., Ibid., 1997, vol. 52, no.11, pp. 1685–1700.

    Article  Google Scholar 

  54. van Steijn, V., Kreutzer, M.T., and Kleijn, C.R., Ibid., 2007, vol. 62, no. 24, pp. 7505–7514.

    Article  Google Scholar 

  55. Hibiki, T. and Mishima, K., Nucl. Eng. Design, 2001, vol. 203, nos. 2–3, pp. 117–131.

    Article  CAS  Google Scholar 

  56. Hetsroni, G., Mosyak, A., Segal, Z., and Pogrebnyak, E., Int. J. Multiphase Flow, 2003, vol. 29, no. 3, pp. 341–360.

    Article  CAS  Google Scholar 

  57. Bauer, T., Dissertation, Technische Universitat Dresden, Dresden, 2007.

  58. Suo, M. and Griffith, P., J. Basic Eng., 1964, vol. 86, no. 3, pp. 576–582.

    Article  CAS  Google Scholar 

  59. Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., and Sadowski, D.L., Int. J. Multiphase Flow, 1999, vol. 25, no. 3, pp. 377–394.

    Article  CAS  Google Scholar 

  60. Dowe, D.C. and Rezkallah, K.S., Int. J. Multiphase Flow, 1999, vol. 25, no. 3, pp. 433–457.

    Article  Google Scholar 

  61. Jayawardena, S.S., Balakotaiah, V., and Witte, L., AIChE J., 1997, vol. 43, no. 6, pp. 1637–1640.

    Article  CAS  Google Scholar 

  62. Hatziantoniou, V. and Andersson, B., Ind. Eng. Chem. Fundam., 1982, vol. 21, no. 4, pp. 451–456.

    Article  CAS  Google Scholar 

  63. Horvath, C., Solomon, B.A., and Engasser, J-M., Ibid., 1973, vol. 12, no. 4, pp. 431–439.

    Article  CAS  Google Scholar 

  64. Kreutzer, M.T., Du, P., Heiszwolf, J.J., Kapteijn, F., and Moulijn, J.A., Chem. Eng. Sci., 2001, vol. 56, no. 22, pp. 6015–6023.

    Article  CAS  Google Scholar 

  65. Heiszwolf, J.J., Kreutzer, M.T., van den Eijnden, M.G., Kapteijn, F., and Moulijn, J.A., Catal. Today, 2001, vol. 69, nos. 1–4, p. 51.

    Article  CAS  Google Scholar 

  66. Gruber, R. and Melin, T., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 15, pp. 2799–2808.

    Article  CAS  Google Scholar 

  67. Van Baten, J.M. and Krishna, R., Chem. Eng. Sci., 2004, vol. 59, no. 12, pp. 2535–2545.

    Article  Google Scholar 

  68. Sherwood, T. K., Pigford, R. L., and Wilke, C.R., Mass Transfer, New York: McGraw-Hill, 1975.

    Google Scholar 

  69. Vandu, C.O., Ellenberger, J., and Krishna, R., Chem. Eng. Proc., 2005, vol. 44, no. 3, pp. 363–374.

    Article  CAS  Google Scholar 

  70. Vandu, C. O., Liu, H., and Krishna, R., Chem. Eng. Sci., 2005, vol. 60, no. 22, pp. 6430–6437.

    Article  CAS  Google Scholar 

  71. Tsoligkas, A.N., Simmons, M.J.H., Wood, J., and Frost, C.G., Catal. Today, 2007, vol. 128, nos. 1–2, p. 3646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Additional information

Original Russian Text © R.Sh. Abiev, I.V. Lavretsov, 2011, published in Rossiiskii Khimicheskii Zhurnal, 2011, Vol. 55, No. 2, pp. 60–70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abiev, R.S., Lavretsov, I.V. Hydrodynamics and mass exchange in gas-liquid slug flow in microchannels. Russ J Gen Chem 82, 2088–2099 (2012). https://doi.org/10.1134/S1070363212120298

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120298

Keywords

Navigation