Skip to main content
Log in

Microwave-assisted organic synthesis in microstructured reactors

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The coupling of microwave heating with microprocessing in continuous-flow reactors has been reviewed in various organic synthesis reactions. The fast growing field of microwave and microreactor technology has a significant impact on the development of fine chemicals industry. Both technologies offer not only the possibility of realizing many of the individual advantages integrated into one combined system, but also the potential of eliminating the major hurdle of a limited microwave penetration depth for large-scale chemical synthesis. Metal film-coated capillary microreactors allow creation of local hot spots to achieve temperatures far in excess of the solvent temperature, which accelerates chemical reactions under MW heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rakhmankulov, D.L., Shavshukova, S.Yu., and Latypova, F.N., in Panorama sovremennoi khimii Rossii. Sovremennyi organicheskii sintez (Panorama of the Modern Chemistry in Russia. Modern Organic Synthesis), Moscow: Khimiya, 2003, pp. 188–202.

    Google Scholar 

  2. Rakhmankulov, D.L., Shavshukova, S.Yu., Latypova, F.N., and Zorin, V.V., Zh. Prikl. Khim., 2002, vol. 75, no. 9, pp. 1409–1416.

    Google Scholar 

  3. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., and Rousell, J., Tetrahedron Lett., 1986, vol. 27, pp. 279–282.

    Article  CAS  Google Scholar 

  4. Giguere, R.J., Bray, T.L., Duncan, S.M., and Majetich, G., Ibid., 1986, vol. 27, pp. 4945–4958.

    Article  CAS  Google Scholar 

  5. Moseley, J.D., Lenden, P., Lockwood, M., Ruda, K., Sherlock, J.P., Thomson, A.D., and Gilday, J.P., Org. Process Res. Dev., 2008, vol. 12, no. 1, pp. 30–40.

    Article  CAS  Google Scholar 

  6. Cablewski, T. Faux, A.F., and Strauss, C.R., J. Org. Chem., 1994, vol. 59, no. 12, pp. 3408–3412.

    Article  CAS  Google Scholar 

  7. Glasnov T.N. and Kappe C.O., Macromol. Rapid Commun., 2007, vol. 28, no. 4, pp. 395–410.

    Article  CAS  Google Scholar 

  8. Comer, E. and Organ, M.G., J. Am. Chem. Soc., 2005, vol. 127, no. 22, pp. 8160–8167.

    Article  CAS  Google Scholar 

  9. Hessel, V., Chem. Eng. Technol., 2009, vol. 32, no. 11, pp. 1655–1681.

    Article  CAS  Google Scholar 

  10. Singh, B.K., Kaval, N., Tomar, S., Van der Eycken, E., and Parmar, V.S., Org. Proc. Res. Dev., 2008, vol. 12, no. 3, pp. 468–474.

    Article  CAS  Google Scholar 

  11. So, H.W. and Taube, A., Int. J. Adhesion Adhesives, 2002, vol. 4, no. 4, pp. 307–312.

    Google Scholar 

  12. Ma, J., Diehl, J.F., Johnson, E.J., Martin, K.R., Miskovsky, N.M., Smith, C.T., Weisel, G.J., Weiss, B.L., and Zimmerman, D.T., J. Appl. Phys., 2007, vol. 101, p. 074906-1–8.

    Google Scholar 

  13. Cao, Z., Yoshikawa, N., and Taniguchi, S., Mater. Chem. Phys., 2009, vol. 117, pp. 14–17.

    Article  CAS  Google Scholar 

  14. Georghiou, G.E., Ehlers R.A., Hallac, A., Malan, H., Papadakis, A.P., and Metaxas, A.C., Advances in Microwave and Radio Frequency Processing, Willert-Porada, M., Ed., Berlin: Springer, 2006, pp. 167–177.

    Chapter  Google Scholar 

  15. Gabriel, C., Gabriel, S., Grant, E.H., Ben, S.J., Halstead, B.S.J., and Mingos, D.M.P., Chem. Soc. Rev., 1998, vol. 27, pp. 213–223.

    Article  CAS  Google Scholar 

  16. Patil, N.G., Rebrov, E.V., Benaskar, F., Esveld, E., Meuldijk, J., Hessel, V., Hulshof, L.A., and Schouten, J.C., J. Microwave Power Electromag. Energ., 2010, accepted.

  17. Schwalbe, T. and Simons, K., CHIM. OGGI, 2006, vol. 24, no. 2, pp. 56–61.

    CAS  Google Scholar 

  18. Baxendale, I. R. and Pitts, M.R., Ibid., 2006, vol. 24, no. 3, pp. 41–45.

    CAS  Google Scholar 

  19. Arvela, R.K., Leadbeater, N.E., and Collins M.J. Jr., Tetrahedron, 2005, vol. 61, no. 39, pp. 9349–9355.

    Article  CAS  Google Scholar 

  20. Loones, K.T.J., Maes, B.U.W., Rombouts, G., Hostyn, S., and Diels, G., Ibid., 2005, vol. 61, pp. 10338–10348.

    Article  CAS  Google Scholar 

  21. Leadbeater, N.E., Smith, R.J., and Barnard, T.M., Org. Biomol. Chem., 2007, vol. 5, pp. 822–825.

    Article  CAS  Google Scholar 

  22. Pipus, G., Plazl, I., and Koloini, T., Chem. Eng. J., 2000, vol. 76, no. 3, pp. 239–245.

    Article  CAS  Google Scholar 

  23. He, P., Haswell, S. J., and Fletcher, P.D.I., Appl. Catal. A., 2004, vol. 274, no. 1–2, pp. 111–114.

    CAS  Google Scholar 

  24. Baxendale, I.R., Griffiths-Jones, C.M., Ley, S.V., and Tranmer, G.K., Chem. Eur. J., 2006, vol. 12, no. 16, pp. 4407–4416.

    Article  CAS  Google Scholar 

  25. Benaskar, F., Hessel, V., Krtschil, U., Löb, P., and Stark, A., Org. Process Res. Dev., 2009, vol. 13, no. 5, pp. 970–982.

    Article  CAS  Google Scholar 

  26. Glasnov, T., Vugts, D.J., Koningstein, M.M., Desai, B., Fabian, W.M.F., Orru, R.V.A., and Kappe, C.O., QSAR Comb. Sci., 2006, vol. 25, nos. 5–6, pp. 509–518.

    Article  CAS  Google Scholar 

  27. Bagley, M.C., Jenkins, R.L., Lubinu, M.C., Mason, C., and Wood, R., J. Org. Chem., 2005, vol. 70, no. 17, pp. 7003–7006.

    Article  CAS  Google Scholar 

  28. Wilson, N.S., Sarko, C.R., and Roth, G.P., Org. Proc. Res. Dev., 2004, vol. 8, no. 3, pp. 535–538.

    Article  CAS  Google Scholar 

  29. Satrio, J.A.B. and Doraiswamy, L.K., Chem. Eng. J., 2001, vol. 82, nos. 1–3, pp. 43–56.

    Article  CAS  Google Scholar 

  30. Jachuck, R.J.J., Selvaraj, D.K., and Varma, R.S., Green Chem., 2006, vol. 8, pp. 29–33.

    Article  CAS  Google Scholar 

  31. Saaby, S., Baxendale, I.R., and Ley, S.V., Org. Biomol. Chem., 2005, vol. 3, pp. 3365–3368.

    Article  CAS  Google Scholar 

  32. Khadlikar, B.M. and Madyar, V.R., Org. Process Res. Dev., 2001, vol. 5, no. 4, pp. 452–455.

    Article  Google Scholar 

  33. Bremner, W.S. and Organ, M.G., J. Comb. Chem., 2007, vol. 9, pp. 14–16.

    Article  CAS  Google Scholar 

  34. He, P., Haswell, S. J., and Fletcher, P.D.I., Sens. Actuators B, 2005, vol. 105, no. 2, pp. 516–520.

    Article  Google Scholar 

  35. He, P., Haswell, S.J., and Fletcher, P.D.I., Lab. Chip., 2004, vol. 4, pp. 38–41.

    Article  CAS  Google Scholar 

  36. Shore, G., Morin, S., and Organ, M.G., Angew. Chem. Int. Ed., 2006, vol. 45, no. 17, pp. 2761–2766.

    Article  CAS  Google Scholar 

  37. Stadler, A. and Kappe, C.O., Org. Lett., 2002, vol. 4, no. 20, pp. 3541–3543.

    Article  CAS  Google Scholar 

  38. Shore, G. and Organ, M.G., Chem. Commun., 2008, pp. 838–840.

  39. Shore, G. and Organ, M.G., Chem. Eur. J., 2008, vol. 14, no. 31, pp. 9641–9646.

    Article  CAS  Google Scholar 

  40. Asao, N., Takahashi, K., Lee, S., Kasahara, T., and Yamamoto, Y., J. Am. Chem. Soc., 2002, vol. 124, no. 43, pp. 12650–12651.

    Article  CAS  Google Scholar 

  41. Shore, G., Tsimerman, M., and Organ, M.G., Beilstein J. Org. Chem., 2009, vol. 5, no. 35, pp. 1–11.

    Google Scholar 

  42. Shore, G., Yoo, W.-J., Li, C.-J., and Organ, M.G., Chem. Eur. J., 2010, vol. 16, no. 1, pp. 126–133.

    Article  CAS  Google Scholar 

  43. Benaskar, F., Engels, V., Patil, N.G., Rebrov, E.V., Meuldijk, J., Hessel, V., Hulshof, L.A., Jefferson, D.A., Schouten, J.C., and Wheatley, A.E.H., Tetrahedron Lett., 2010, vol. 51, pp. 248–251.

    Article  CAS  Google Scholar 

  44. Engels, V., Benaskar, F., Patil, N.G., Rebrov, E.V., Hessel, V., Hulshof, L.A., Jefferson, D.A., Vekemans, J.A.J.M., Karwal, S., Schouten, J.C., and Wheatley, A.E.H., Org. Process Res. Dev., 2010, vol. 14, pp. 644–649.

    Article  CAS  Google Scholar 

  45. Gao, P., Rebrov, E.V., Schouten, J.C., Kleismit, R., Cetnar, J., Subramanyam, G., and Kozlowski, G., Proc. 2009 MRS Fall Meeting, Boston, MA, USA, 2009.

  46. Gao, P., Rebrov, E.V., Verhoeven, M.W.G.M., Schouten, J.C., Kleismit, R., Kozlowski, G., Cetnar, J., Turgut, Z., and Subramanyam, G., J. Appl. Phys., 2010, vol. 107, no. 4, p. 044317-1–044317-8.

    Article  Google Scholar 

  47. Comer, E. and Organ, M.G., Chem. Eur. J., 2005, vol. 11, no. 24, pp. 7223–7227.

    Article  CAS  Google Scholar 

  48. Leadbeater, N.E. and Schmink, J.R., Tetrahedron, 2007, vol. 63, no. 29, pp. 6764–6773.

    Article  CAS  Google Scholar 

  49. Schmink, J.R., Kormos, C.M., Devine, W.G., and Leadbeater, N.E., Org. Process Res. Dev., 2010, vol. 14, no. 1, pp. 205–214.

    Article  CAS  Google Scholar 

  50. Mason, B.P., Price, K.E., Steinbacher, J.L., Bogdan, A.R., and McQuade, D.T., Chem. Rev., 2007, vol. 107, no. 6, pp. 2300–2318.

    Article  CAS  Google Scholar 

  51. Bowman, M.D., Holcomb, J.L., Kormos, C.M., Leadbeater, N.E., and Williams, V.A., Org. Process Res. Dev., 2008, vol. 12, no. 1, pp. 41–57.

    Article  CAS  Google Scholar 

  52. Kremsner, J.M., Stadler, A., and Kappe, C.O., Top. Curr. Chem., 2006, vol. 266, pp. 233–278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rebrov.

Additional information

Original Russian Text © E.V. Rebrov, 2011, published in Rossiiskii Khimicheskii Zhurnal, 2011, Vol. 55, No. 2, pp. 34–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebrov, E.V. Microwave-assisted organic synthesis in microstructured reactors. Russ J Gen Chem 82, 2060–2069 (2012). https://doi.org/10.1134/S1070363212120262

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120262

Keywords

Navigation