Skip to main content
Log in

Gas-phase microreactors as a powerful tool for kinetic investigations

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this review was to show the versatility of gas-phase microreactors for the determination of kinetics of chemical systems. Precise kinetic models were demonstrated for two industrially relevant cases: (a) the continuous selective catalytic NO reduction by hydrocarbons in the excess oxygen at 150–550°C and (b) the catalytic production of ethylene oxide, one of the most important intermediates in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrfeld, W., Hessel, V., and Löwe, H., Microreactors — New Technology for Modern Chemistry, Weinheim: Wiley-VCH, 2000.

    Google Scholar 

  2. Hessel, V., Renken, A., Schouten, J.C., and Yoshida, J.-I., Handbook of Microprocess Technology, Weinheim: Wiley-VCH, 2009.

    Google Scholar 

  3. Jensen, K., Chem. Eng. Sci., 2001, vol. 56, p. 293.

    Article  CAS  Google Scholar 

  4. deMello, Nature, 2006, vol. 442, p. 394.

    Article  CAS  Google Scholar 

  5. Ajmera, S. K., Delattre, C., Schmidt, M. A., and Jensen, K.F., Sens. Actuators B: Chem., 2002, vol. 82, p. 297.

    Article  Google Scholar 

  6. Pieters, B., Andrieux, G., and Eloy, J., Chem. Eng. Technol., 2007, vol. 30, p. 407.

    Article  CAS  Google Scholar 

  7. Walter, St., Malmberg, St., Schmidt, B., and Liauw, M.A., Catal. Today, 2005, vol. 110, p. 15.

    Article  CAS  Google Scholar 

  8. Hogan, J., Nature, 2006, vol. 442, p. 27.

    Article  Google Scholar 

  9. Kralish, D. and Kreisel, G., Chem. Eng. Sci., 2007, vol. 62, p. 1094.

    Article  Google Scholar 

  10. Kiwi-Minsker, L. and Renken, A., Catal. Today, 2005, vol. 110, p. 2.

    Article  CAS  Google Scholar 

  11. Mills, P.L., Quiram, D.J., and Ryley, J.F., Chem. Eng. Sci., 2007, vol. 62, p. 6992.

    Article  CAS  Google Scholar 

  12. Hernández Carucci, J.R., Sosa, J., Arve, K., Karhu, H., Mikkola, J.-P., Eränen, K., Salmi, T., and Murzin, D.Yu., Catalysis: Principles, Types and Applications, Nova Publishers, accepted.

  13. Hernández Carucci, J.R., Halonen, V., Eränen, K., Wärnå, J., Ojala, S., Huuhtanen, M., Keiski, R., and Salmi, T., Ind. Eng. Chem. Res., 2010, vol. 49, p. 10897.

    Article  Google Scholar 

  14. Howell, R.S. and Hatalis, M.K., J. Electrochem. Soc., 2002, vol. 149, p. 143.

    Article  Google Scholar 

  15. Sebastián, V., de la Iglesia, O., Mallada, R., Casado, L., Kolb, G., Hessel, V., and Santamaría, J., Microporous Mesoporous Mater., 2008, vol. 115, p. 147.

    Article  Google Scholar 

  16. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Physical Electronics Division, USA, 1992.

    Google Scholar 

  17. Klingstedt, F., Eränen, K., Lindfors, L.-E., Andersson, S., Cider, L., Landberg, C., Jobson, E., Eriksson, L., Ilkenhans, T., and Webster, D., Top. Catal., 2004, vol. 30/31, p. 27.

    Article  CAS  Google Scholar 

  18. Hernández Carucci, J.R., Arve, K., Eränen, K., Murzin, D.Yu., and Salmi, T., Catal. Today, 2008, vols. 133–135, p. 448.

    Article  Google Scholar 

  19. Meunier, F.C., Breen, J.P., Zuzaniuk, V., Olsson, M., and Ross, J.R.H., J. Catal., 1999, vol. 187, p. 493.

    Article  CAS  Google Scholar 

  20. Eränen, K., Klingstedt, F., Arve, K., Lindfors, L.E., and Murzin, D.Yu., J. Catal., 2004, vol. 227, p. 328.

    Article  Google Scholar 

  21. http://www.sriconsulting.com/WP/Public/Reports/eo/ .

  22. Rebsdat, S. and Mayer, D., Ethylene Oxide, in Ullman’s Encyclopedia of Industrial Technology, 7th ed., Weinheim: Wiley-VCH, 2005 (Online electronic ed.).

    Google Scholar 

  23. Gavriilidis, A., Angeli, P., Cao, E., Yeong, K.K., and Wan, Y.S.S., Chem. Eng. Res. Des., 2002, vol. 80, p. 3.

    Article  CAS  Google Scholar 

  24. Stankiewicz, I. and Moulijn, J.A., Chem. Eng. Prog., 2000, vol. 96, p. 22.

    CAS  Google Scholar 

  25. Nault, L.G., Bolme, D.W., and Johanson, L.N., Ind. Eng. Chem. Process Des. Dev., 1962, vol. 1, p. 285.

    Article  CAS  Google Scholar 

  26. van Santen, R.A. and Kuipers, H.P.C.E., Adv. Catal., 1987, vol. 35, p. 265.

    Article  Google Scholar 

  27. Campbell, T., J. Catal., 1985, vol. 94, p. 436.

    Article  CAS  Google Scholar 

  28. Kestenbaum, H., Lange de Oliveira, A., Schmidt, W., Schuth, F., Ehrfeld, W., Gebauer, K., Löwe, H., and Richter, T., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 2741.

    Article  Google Scholar 

  29. Lee, J.K., Verykios, X.E., and Pitchai, R., Appl. Catal., 1988, vol. 44, p. 223.

    Article  CAS  Google Scholar 

  30. Levenspiel, O., The Chemical Reactor Omnibook, Corvallis: Oregon State Univ. Bookstores, 1989.

    Google Scholar 

  31. Obuchi, A., Ohi, A., Nakamura, M., Ogata, A., Mizuno, K., and Ohuchi, H., Appl. Catal. B: Environ., 1993, vol. 2, p. 71.

    Article  CAS  Google Scholar 

  32. Danckwerts, P.V., Chem. Eng. Sci., 1953, vol. 2, p. 1.

    Article  CAS  Google Scholar 

  33. Garcia, J., Garcia, E., Hyde, J.R., Fraga, J., Yan, C., Poliakoff, M., and Cocero, M.J., J. Supercrit. Fluids, 2007, vol. 41, p. 82.

    Article  Google Scholar 

  34. Westerterp, R., van Swaaij, W.P.M., and Beenackers, A.C.M., Chemical Reactor Design and Operation, Amsterdam: Elsevier, 1984.

  35. Sotowa, K., Kusakabe, K., and Street, D., Fluent News, 2002, vol. 11, p. 18.

    Google Scholar 

  36. Hardt, S., Modeling and Simulation of Microreactors in Modeling of Process Intensification, Keil, F.J., Ed., Weinheim: Wiley-VCH, 2007.

    Google Scholar 

  37. Roy, S. and Raju, R., J. Appl. Phys., 2003, vol. 93, p. 4870.

    Article  CAS  Google Scholar 

  38. Hernández Carucci, J.R., Eränen, K., Murzin, D.Yu., and Salmi, T.O., Catal. Today, 2009, vol. 147, p. S149.

    Article  Google Scholar 

  39. Hayes, R.E., Liu, B., Moxom, R., and Votsmeier, M., Chem. Eng. Sci., 2004, vol. 59, p. 3169.

    Article  CAS  Google Scholar 

  40. Gobby, D. Eames, I, and Gavriilidis, A., Proc. 5th Int. Conf. on Microreaction Technology (IMRET 5), Berlin: Springer, 2001, p. 141

    Book  Google Scholar 

  41. Schouten, P.S., Borman, P.C., and Westerterp, K.R., Chem. Eng. Process, 1996, vol. 35, p. 43.

    Article  CAS  Google Scholar 

  42. Haario, H., ModEst 6.0 — A User’s Guide, Helsinki: ProfMath, 2007.

    Google Scholar 

  43. Arve, K., Backman, H., Klingstedt, F., Eränen, K., and Murzin, D.Yu., Appl. Catal. A: Gen., 2006, vol. 303, p. 96.

    Article  CAS  Google Scholar 

  44. Marnellos, G.E., Efthimiadis, E.A., and Vasalos, I.A., Appl. Catal. B: Environ., 2004, vol. 48, p. 1.

    Article  CAS  Google Scholar 

  45. Murzin, Yu., Kubickova, I., Snåre, M., and Mäki-Arvela, P., EU Patent 05075068.6, 2005.

  46. Arve, K., Hernández Carucci, J.R., Eränen, K., Aho, A., and Murzin, D.Yu., Appl. Catal. B: Environmental, 2009, vol. 90, p. 603.

    Article  CAS  Google Scholar 

  47. Hernández Carucci, J.R., Kurman, A., Karhu, H., Arve, K., Eränen, K., Wärnå, J., Salmi, T., and Murzin, D.Yu., Chem. Eng. J., 2009, vol. 154, p. 34.

    Article  Google Scholar 

  48. Temkin, M.I., Adv. Catal., 1979, vol. 28, p. 173.

    Article  CAS  Google Scholar 

  49. Laidler, K.J., Chemical Kinetics, New York: Harper and Row, 1987, 3rd ed.

    Google Scholar 

  50. Stegelmann, C., Schiodt, N.C., Campbell, C.T., and Stoltze, P., J. Catal., 2004, vol. 221, p. 630.

    Article  CAS  Google Scholar 

  51. Petrov, L., Eliyas, A., and Shopov, D., Appl. Catal., 1985, vol. 18, p. 87.

    Article  CAS  Google Scholar 

  52. Lafarga, D., Al-Juaied, M.A., Bondy, C.M., and Varma, A., Ind. Eng. Chem. Res., 2000, vol. 39, p. 2148.

    Article  CAS  Google Scholar 

  53. Borman, P.C. and Westerterp, K.R., Ind. Eng. Chem. Res., 1995, vol. 34, p. 49.

    Article  CAS  Google Scholar 

  54. Schouten, P.S., Borman, P.C., and Westerterp, K.R., Chem. Eng. Process., 1996, vol. 35, p. 107.

    Article  CAS  Google Scholar 

  55. Kestenbaum, H., Lange de Oliveira, A., Schmidt, W., Schüth, F., Ehrfeld, W., Gebauer, K., Löwe, H., Richter, T., Lebiedz, D., Untiedt, I., and Züchner, H., Ind. Eng. Chem. Res., 2002, vol. 41, p. 710.

    Article  CAS  Google Scholar 

  56. Kim, Y.-C., Park, N.-C., Shin, J.-S., Lee, S.R., Lee, Y.J., and Moon, D.J., Catal. Today, 2003, vol. 87, p. 153.

    Article  CAS  Google Scholar 

  57. Gleaves, J.T., Sault, A.G., Madix, R.J., and Ebner, J.R., J. Catal., 1990, vol. 121, p. 202.

    Article  CAS  Google Scholar 

  58. Stegelmann, C. And Stoltze, P., Ibid., 2004, vol. 226, p. 129.

    Article  CAS  Google Scholar 

  59. Vayenas, C.G., Bebelis, S., Pliangos, C., Brosda, S., and Tsiplakides, D., Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion, and Metal-Support Interactions, New York: Kluwer, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Hernández Carucci.

Additional information

Original Russian Text © J.R. Hernández Carucci, K. Eränen, T.O. Salmi, D.Yu. Murzin, 2011, published in Rossiiskii Khimicheskii Zhurnal, 2011, Vol. 55, No. 2, pp. 16–33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández Carucci, J.R., Eränen, K., Salmi, T.O. et al. Gas-phase microreactors as a powerful tool for kinetic investigations. Russ J Gen Chem 82, 2034–2059 (2012). https://doi.org/10.1134/S1070363212120250

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120250

Keywords

Navigation