Skip to main content
Log in

Microfabrication in metals, ceramics and polymers

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In this overview report fabriation of microconstructed devices and systems out of metals, ceramics and polymers will be presented briefly as well as bonding, sealing and packaging of devices. The main objective for the systems and divices covered here is chemical process engineering, thud, metal, ceramic, and polymer manufacturing techniques are considered, while silicon technology is itentionally left out, because this technology is normally not used in this tipoc. The text will only provide a rough overview onto the numerous techniques and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madou, M., Fundamentals of Microfabrication, London: CRC, 1997.

    Google Scholar 

  2. Menz, W. and Mohr, J., Mikrosystemtechnik für Ingenieure, Weinheim: VCH, 1997.

    Google Scholar 

  3. Eigler, H. and Beyer, W., Moderne Produktionsprozesse der Elektrotechnik, Elektronik und Mikrosystemtechnik, Renningen: Expert, 1996.

    Google Scholar 

  4. Brandner, J.J., et al., Advanced Micro & Nanosystems; vol. 5: Micro Process Engineering, Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J., and Tabata, O., Eds., Weinheim: Wiley-VCH, 2006, ch. 10.

    Google Scholar 

  5. Brandner, J.J., Bohn, L., Schygulla, U., Wenka, A., and Schubert, K., Microreactors: Epoch-Making Technology for Synthesis, Yoshida, J.I., Ed., Tokyo: CMC, 2003, pp. 75, 213.

    Google Scholar 

  6. Knitter, R. and Dietrich, Th., Advanced Micro & Nanosystems; vol. 5: Micro Process Engineering, Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J., and Tabata, O., Eds., Weinheim: Wiley-VCH, 2006, ch. 12.

    Google Scholar 

  7. Petzow, G., Metallographisches, Keramographisches und Plastographisches Ätzen, Berlin: Gebrüder Bornträger, 1994.

    Google Scholar 

  8. Harris, T. W., Chemical Milling, Oxford: Clarendon, 1976.

    Google Scholar 

  9. Drost, M.K., Wegeng, R.S., Martin, P.M., Brooks, K.P., Martin, J.L., and Call, C., Proc. 4th Int. Conf. on Micro Reaction Technology, Atlanta: AIChE, 2000, pp. 308–313.

    Google Scholar 

  10. Matson, D.W., Martin, P.M., Tonkovich, A.Y., and Roberts, G.L., Proc. SPIE, 1998, vol. 3514, p. 286.

    Google Scholar 

  11. US Patent 5,611,214, March 18, 1997; US Patent no. 8 811 062, September 22, 1998.

  12. http://www.pnl.gov/microcats/aboutus/publications/microfabrication/DWMFrankfurt.pdf , accessed on June 30, 2010; http://www.pnl.gov/microcats/aboutus/publications/microfabrication/MatsonFrankfurt-Paper1999.PDF , accessed on June 30, 2010.

  13. Holladay, J.D., Brooks, K.P., Wegeng, R., Hu, J., Sanders, J., and Baird. Microreactor, S., Catal. Today, 2007, vol. 120, no. 1, p. 35.

    Article  CAS  Google Scholar 

  14. Slocum, A.H., Precision Machine Design: Macromachine Design Philosophy and Its Applicability to the Design of Micromachines, Proc. IEEE MEMS 1992, Travemünde, 1992.

  15. Boothroyd, G. and Knight, W.A., Fundamentals of Machining and Machine Tools, New York: Marcel Dekker, 1989.

    Google Scholar 

  16. Evans, C., Precision Engineering: An Evolutionary View, Bedford: Cranfield Univ. Press, 1989.

    Google Scholar 

  17. Snoeys, R., Non-Conventional Machining Techniques, The State of the Art, Advances in Non-Traditional Machining, Anaheim, CA: 1986.

  18. Shaw, M.C., Metal Cutting Principles, Oxford: Clarendon, 1984.

    Google Scholar 

  19. DeVries, W.R., Analysis of Material Removal Processes, New York: Springer, 1992.

    Book  Google Scholar 

  20. Chryssolouris, G., Laser Machining, New York: Springer, 1991.

    Google Scholar 

  21. Vansteenkiste, G., Boudeau, N., Leclerc, H., Barriere, T., Celin, J.C., Carmes, C., Roques, N., Millot, C., Benoit, C., and Boilat, C., Proc. 4th LANE 2004, Erlangen, Germany, 2004, p. 425

  22. Fischer, P., Blatter, A., Romano, V., and Weber, H.P., Laser Phys. Lett., 2004, p. 1.

  23. Brandner, J.J., Hansjosten, E., Anurjew, E., Pfleging, W., and Schubert, K., Proc. SPIE, 2007, vol. 6459, p. 645911/1.

    CAS  Google Scholar 

  24. Pfeifer, P., Proc. E&E China 2004: The 7th Biennial China Int. Environmental Protection and Energy Saving and Comprehensive Resource Utilization Exhibition, Beijing, China, 2004.

  25. Ehrfeld, W., Gärtner, C., Golbig, K., Hessel, V., Konrad, R., Löwe, H., Richter, T., and Schulz, C., Proc. 1st Int. Conf. on Microreaction Technology, Ehrfeld, W., Ed., Berlin: Springer, 1997, p. 72.

    Google Scholar 

  26. Kolb, G., Cominos, V., Drese, K., Hessel, V., Hofmann, C., Löwe, H., Wörz, O., and Zapf, V., Proc. 6th Int. Conf. on Micro Reaction Technology, Baselt, P., Eul, U., Wegeng, R.S., Rinard, I., and Hoch, B., Eds., New Orleans, LA, USA: AIChE, 2002, p. 61.

    Google Scholar 

  27. Ziogas, A., Löwe, H., Küpper, M., and Ehrfeld, W., Proc. 3rd Int. Conf. on Micro Reaction Technology, Ehrfeld, W., Ed., Berlin: Springer, 2000, p. 136.

    Google Scholar 

  28. Meyer, H., Crämer, K.., Kurtz, O., Herber, R., Friz, W., Schwiekendick, C., Ringtunatus, O., and Madry, C., DE Patent Appl. 10251658 A1, 2002.

  29. Pfeifer, P., et al., Micromotive, 2004, unpublished results.

  30. Pfeifer, P., Görke, O., Schubert, K., Martin, D., Herz, S., Horn, U., and Gräbener, Th., Proc. 8th Int. Conf. on Micro Reaction Technology (IMRET 8), Atlanta, GA, USA, 2005.

  31. Paul, B.K., Hasan, H., Dewey, T., Alman, D, and Wilson, R.D., Proc. 6th Int. Conf. on Micro Reaction Technology, Baselt, P., Eul, U., Wegeng, R.S., Rinard, I., and Hoch, B., Eds., New Orleans, LA, USA, 2002, p. 2021.

  32. Bier, W., Keller, W., Linder, G., Seidel, D., and Schubert, K., Symp. Proc. Vol., New York: ASME, DSC, vol. 19, p. 189.

  33. Pfleging, W. and Lambach, H., unpublished results.

  34. Heule, M., Vuillemin, S., and Gauckler, L.J., Adv. Eng. Mater., 2003, vol. 15, p. 1237.

    Article  CAS  Google Scholar 

  35. Yu, Z.Y., Rakurjar, K.P., and Tandon, A., Trans. ASME, 2004, vol. 126, p. 727.

    Article  Google Scholar 

  36. Knitter, R., Günther, E., Maciejewski, U., and Odemer, C., cfi/Ber. DKG, 1994, vol. 71, p. 549.

    CAS  Google Scholar 

  37. Mutsuddy, B.C. and Ford, R.G., Ceramic Injection Molding, London: Chapman & Hall, 1995.

    Google Scholar 

  38. Griffith, M.L. and Halloran, J.W., J. Am. Ceram. Soc., 1996, vol. 79, p. 2601.

    Article  CAS  Google Scholar 

  39. Blazdell, P.F., Evans, J.R.G., Edirisinghe, M.J., Shaw, P., and Binstead, M.J., J. Mater. Sci. Lett., 1995, vol. 14, p. 1562.

    Article  CAS  Google Scholar 

  40. Agrarwala, M. K., Bandyopadhyay, A., van Weeren, R., Safari, A., Danforth, S.C., Langrana, N., Jamalabad, V.R., and Whalen, P.J., Am. Ceram. Soc. Bull., 1996, vol. 75, p. 60.

    Google Scholar 

  41. Evans, V., Materials Science and Technology. Vol. 17a: Processing of Ceramics, Brook, R.J., Ed., Weinheim: VCH, 1996, part 1, ch. 8.

    Google Scholar 

  42. Bauer, W. and Knitter, R., J. Mater. Sci., 2002, vol. 37, p. 3127.

    Article  CAS  Google Scholar 

  43. Mistler, R.E., Ceramic Processing, Terpstra, R.A., Pex, P.P.A.C., and de Vries, A.H., Eds., London: Chapman & Hall, 1995, ch. 5.

    Google Scholar 

  44. Ritzhaupt-Kleissl, H.-J., von Both, H., Dauscher, M., and Knitter, R., Advanced Micro and Nanosystems, Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J., and Tabata, O., Weinheim: Wiley-VCH, 2005, vol. 4, ch. 15.

    Google Scholar 

  45. Su, B., Button, T.W., Schneider, A.. Singleton, L., and Prewett, V., Microsyst. Technol., 2002, vol. 8, p. 359.

    Article  CAS  Google Scholar 

  46. Meschke, F., Riebler, G., Hessel, V., Schürer, J., and Baier, T., Chem. Eng. Technol., 2005, vol. 28, p. 465.

    Article  CAS  Google Scholar 

  47. Haas-Santo, K., Görke, O., Pfeifer, P., and Schubert, K., Chimia, 2002, vol. 56, p. 605.

    Article  CAS  Google Scholar 

  48. Dietrich, T.R., Photostrukturierung von Glas. Handbuch Mikrotechnik, Ehrfeld, W., Ed., Wien: Hanser, 2002, p. 407.

    Google Scholar 

  49. Dietrich, T.R., Freitag, A., and Scholz, R., Chem. Eng. Technol., 2005, vol. 28, p. 477.

    Article  CAS  Google Scholar 

  50. Livingston, F.E., Hansen, W.W., Huang, A., and Helvajian, H., Proc. SPIE, 2002, vol. 4637, p. 404.

    Article  CAS  Google Scholar 

  51. Giselbrecht, S., Gottwald, E., Schlingloff, G., Schober, A., Truckenmüller, R., Weibezahn, K.F., and Welle, A., Proc. 9th Int. Conf. on Miniaturized Systems for Chemistry and Life Sciences µTAS 2005, Boston, MA, USA, 2005.

  52. Ehrenstein, G.W. and Erhard, G., Konstruieren mit Polymerwerkstoffen ein Bericht zum Stand der Technik, München: Hanser, 1983.

    Google Scholar 

  53. Mohr, J.A., Last, A., Hollenbach, U., Oka, T., and Wallrabe, U., J. Lightwave Technol., 2003, vol. 21, p. 643.

    Article  Google Scholar 

  54. Ruprecht, R., Benzler, T., Holzer, P., Müller, K., Norajitra, P., Piotter, V., and Ulrich, H., Galvanotechnik, 1999, vol. 90, p. 2260.

    Google Scholar 

  55. Heckele, M. and Schomburg, V., J. Mikromech. Mikroeng., 2004, vol. 14, p. R1.

    Article  CAS  Google Scholar 

  56. Pettit, G. H. and Sauerbrey, R., Appl. Phys. A: Solids Surf., 1993, vol. 56, p. 51.

    Article  Google Scholar 

  57. Pfleging, W., Hanemann, Th., Bernauer, W., and Torge, M., Proc. SPIE, 2001, vol. 4274, p. 331.

    Article  CAS  Google Scholar 

  58. Cheng, J.-Y., Wie, C.-W., Hsu, K.-H., and Young, T.-H., Sens. Actuators B: Chemical, 2004, vol. 99, p. 186.

    Article  Google Scholar 

  59. Gebharth, A., Rapid Prototyping, München: Hansa, 1996.

    Google Scholar 

  60. Ikuta, K., Hirowatari, K., and Ogata, T., Proc. 7th IEEE Int. Workshop on Micro Electro Mechanical Systems (MEMS’94), Osio, Japan, 1994, p. 1.

  61. Ikuta, K., Hasegawa, T., Adachi, T., and Maruo, S., Proc. 13th IEEE Int. Workshop on Micro Electro Mechanical Systems (MEMS’2000), Orlando, FL, USA, 2000, p. 739ff.

  62. Ikuta, K., Proc. 1st Int. Workshop on Micro Chemical Plant Technology, Kyoto, Japan, 2003, p. 54.

  63. Bacher, W. and Saile, V., Proc. 2003 JSME-IPP/ASMEISPS Joint Conf. on Micromechatronics for Information and Precision Equipment, Yokohama, Japan, 2003, p. 133.

  64. Truckenmüller, R., Ahrens, R., Bahrs, H., Cheng, Y., Fischer, G., and Lehmann, J..,. Proc. DTIP, Montreux, Switzerland, 2005.

  65. Bader, R., Jacob, P., Volk, P., and Moritz, H., EU Patent WO 99/25783.

  66. Bachmann, F. and Russek, U., Proc. SPIE, 2002, vol. 4637, p. 505.

    Article  CAS  Google Scholar 

  67. Sato, K., Kurosaki, Y., Saito, T., and Satoh, I., Proc. SPIE, 2002, vol. 4637, p. 528.

    Article  CAS  Google Scholar 

  68. http://www.clearweld.com .

  69. Teubner, U. and Klotzbuecher, T., Proc. Laser Microfabrication Conf. (ICALEO 200,), San Francisco, CA, USA, 2004.

  70. Pfleging, W., Baldus, O., Bruns, M., Baldini, A., and Bemporad, E., Proc. SPIE, 2005, vol. 5713, p. 479.

    Article  CAS  Google Scholar 

  71. Hessel, V. and Löwe, H., Chem. Ing. Tech., 2002, vols. 1–2, p. 17; Ibid., vol. 3, p. 185; Ibid., vol. 4, p. 381.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Brandner.

Additional information

Original Russian Text © J. J. Brandner, 2011, published in Rossiiskii Khimicheskii Zhurnal, 2011, Vol. 55, No. 2, pp. 9–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandner, J.J. Microfabrication in metals, ceramics and polymers. Russ J Gen Chem 82, 2025–2033 (2012). https://doi.org/10.1134/S1070363212120249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120249

Keywords

Navigation