Skip to main content
Log in

Cluster mechanism of the atmosphere ozone destruction by bromine ions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Interaction of bromine ions absorbed by water cluster with adsorbed oxygen and ozone molecules has been investigated by the molecular dynamics method. It was shown that the part of O2 molecules was removed from the system by evaporating Br ions, while all O3 molecules and Br ions were kept in the system during 25 ps. The increase the concentration of the Br ions in the clusters resulted in a reduction of the absorption intensity and emission in IR spectra at the presence of oxygen, whereas the absorption intensity in the appropriate IR spectra of ozone-containing systems increased with the growth of a number of the Br ions. Raman spectra of oxygen-containing systems were poorly sensitive to the concentration of the Br ions but the absorption intensity of Raman spectra for systems with ozone considerably decreased with the growth of a number of bromine ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galashev, A.E., Rakhmanova, O.R., Novruzova, O.A. and Galasheva, A.A., Kolloid. Zh., 2009, vol. 71, no. 6, p. 734.

    Google Scholar 

  2. Galashev, A.E., Rus. J. Phys. Chem. A., 2009, vol. 83, no. 13, p. 55.

    Google Scholar 

  3. Galashev, A.E., Rakhmanova, O.R. and Novruzova, O.A., Zh. Obshch. Khim., 2009, vol. 79, no. 9, p. 1409.

    Google Scholar 

  4. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  CAS  Google Scholar 

  5. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6579.

    Article  CAS  Google Scholar 

  6. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6587.

    Article  CAS  Google Scholar 

  7. Saint-Martin, H., Hess, B. and Berendsen, H.J.C., J. Chem. Phys., 2004, vol. 120, p. 11133.

    Article  CAS  Google Scholar 

  8. Haile, J.M., Molecular dynamics simulation. Elementary methods, N.Y.-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, Inc., 1992.

    Google Scholar 

  9. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoj teorii giroskopov (Problems of Rigid Body Dynamics and Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  10. Sonnenschein, R., J. Comp. Phys., 1985, vol. 59, p. 347.

    Article  CAS  Google Scholar 

  11. Bresme, F., J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  CAS  Google Scholar 

  12. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  CAS  Google Scholar 

  13. Bosma, W.B., Fried, L.E. and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  CAS  Google Scholar 

  14. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnyih sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982, vol. 8.

    Google Scholar 

  15. Fisicheskaya enziklopediya (Physical Encyclopedia), Ed. Prokhorov, A.M., Moscow: Sovetskaya Enziklopediya, 1988, vol. 1, p. 702.

    Google Scholar 

  16. Galashev, A.E., Rakhmanova, O.R. and Chukanov, V.N., Teplofiz. Vysok. Temp., 2009, vol. 47, no. 3, p. 360.

    Google Scholar 

  17. Galashev, A.E. and Rakhmanova, O.R., Zh. Obshch. Khim., 2008, vol. 78, no. 8, p. 1233.

    Google Scholar 

  18. Goggin, P.L. and Carr, C., Far Infrared Spectroscopy and Aqueous Solutions. Water and Aqueous Solutions, Bristol-Boston: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  19. Kozintsev, V.I., Belov, M.L., Gorodnichev, V.A. and Fedotov, Yu.V., Lazernyij optiko-akusticheskij analiz mnogokomponentnyih gazovyih smesej (Optical-and-Acoustic Laser Analysis of Multicomponent Gas Mixtures), Moscow: Izd. MGTU im. N.E. Baumana (Bauman Moscow State Technical Univ.), 2003, 352 p.

    Google Scholar 

  20. Potapova, G.F., Klochikhin, V.L., Putilov, A.V., Kasatkin, E.V. and Kozlova, N.V., Abstr. I Vserossijskaya Konferentsiya “Ozon i drugie ekologicheski chistyie okisliteli. Nauka i tehnologiya”, Moscow: Izd. Mosk. Gos. Univ., 2005.

    Google Scholar 

  21. Upschulte, B.L., Green, B.D., Blumberg, W.A. and Lipson, S.J., J. Phys. Chem., 1994, vol. 98, p. 2328.

    Article  CAS  Google Scholar 

  22. Vallee, P., Lafait, J., Ghomi, M., Jouanne, M. and Morhange, J.F., J. Molec. Struct., 2003, vol. 651–653, p. 371.

    Article  Google Scholar 

  23. Goldschleger, I. U., Kerenskaya, G., Janda, K. C. and Apkarian, V. A., J. Phys. Chem., A., 2008, vol. 112, p. 787.

    Article  CAS  Google Scholar 

  24. Andrews, L. and Spiker, R.C. Jr., J. Phys. Chem., 1972, vol. 76, p. 3208.

    Article  CAS  Google Scholar 

  25. Mausbach, P., Schnitker, J. and Geiger, A., J. Tech. Phys., 1987, vol. 28, p. 67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Galashev, 2010, published in Ekologicheskaya Khimiya, 2010, Vol. 19, No. 2, pp. 65–74.

Alexader Yevgenjevich Galashev, D. phis.-math., the main scientist at the Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences. Area of research interests: chemical aspects of ecology and rational nature use.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E. Cluster mechanism of the atmosphere ozone destruction by bromine ions. Russ J Gen Chem 81, 2625–2633 (2011). https://doi.org/10.1134/S1070363211130019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363211130019

Keywords

Navigation