Regularities of the sorption behavior of actinide ions on mineral colloid particles

  • A. Yu. Romanchuk
  • S. N. Kalmykov
  • A. P. Novikov
  • E. V. Zakharova
Article

Abstract

It is shown that an alternative to Kd in describing sorption at low degrees of surface saturation of colloid particles is pH50 which takes into account both the properties of the sorbent and sorbate. The correlations of pH50 with cation charge density for the An(III)-An(IV)-An(V)-An(VI) series and with hydrolysis constants are presented. The redox reactions with plutonium that accompany its sorption onto Fe(III) oxides are discussed.

References

  1. 1.
    Penrose, W.R., Polzer, W.L., Essington, E.H., Nelson, D.M., and Orlandini, K.A., Environ. Sci. Technol., 1990, vol. 24, pp. 228–234.CrossRefGoogle Scholar
  2. 2.
    Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L., Nature, 1999, vol. 397, pp. 56–59.CrossRefGoogle Scholar
  3. 3.
    Zänker, H., Richter, W., Brendler, V., and Nitsche, H., Radiochim. Acta, 2000, vol. 88, pp. 619–624.CrossRefGoogle Scholar
  4. 4.
    Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., and Myasoedov, B.F., Science, 2006, vol. 314, pp. 638–641.CrossRefGoogle Scholar
  5. 5.
    Jenne, E.A., Adsorption from Aqueous Solutions, Washington, DC: Advances in Chemical Series, Am. Chem. Soc., 1968, p. 79.Google Scholar
  6. 6.
    Repelova, A., Sachs, S., and Bernhard, G., Radiochim. Acta, 2006, vol. 94, pp. 825–833.CrossRefGoogle Scholar
  7. 7.
    Banik, N.L., Speciation of Tetravalent Plutonium in Contact with Humic Substances and Kaolinite under Environmental Conditions, PhD Thesis, Mainz, 2006.Google Scholar
  8. 8.
    Fjeld, R.A., Serkiz, S.M., McGinnis, P.L., Elci, Al., and Kaplan, D.I., J. Contam. Hydrol., 2003, vol. 67, pp. 79–94.CrossRefGoogle Scholar
  9. 9.
    Duff, M.C., Hunter, D.B., Triay, I.R., Bertsch, P.M., Reed, D.T., Sutton, S.R., Shea-McCarthy, G., Kitten, J., Eng, P., Chipera, S.J., and Vaniman, D.T., Environ. Sci. Technol., 1999, vol. 33, pp. 2163–2169.CrossRefGoogle Scholar
  10. 10.
    Kersting, A.B. and Reirmus, P.W., Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation, Livermore: Lawrence Livermore National Laboratory, UCRL-ID-149688, 2003, pp. 67–88.CrossRefGoogle Scholar
  11. 11.
    Berner, U., Project Opalinus Clay: Radionuclide Concentration Limits in the Near Field of Repository for Spent Fuel and Vitrified High-Level Waste, Report of the Paul Scherrer Inst., 2002, pp. 02–22.Google Scholar
  12. 12.
    Sabodina, M.N., Kalmykov, S.N., Artem’eva, K.A., Zakharova, E.V., and Sapozhnikov, Yu.A., Radiokhimiya, 2006, vol. 48, no. 5, pp. 437–441.Google Scholar
  13. 13.
    Tsukamoto, M. and Fujita, T., Czech. J. Phys., 2006, vol. 56,suppl. D, pp. 339–348.Google Scholar
  14. 14.
    Nakayama, Sh. and Sakamoto, Y., Radiochim. Acta, 1991, vol. 52/53, pp. 153–157.Google Scholar
  15. 15.
    Ferriss, E., Helean, K., Bryan, C., Prady P., and Ewing, R., J. Nucl. Mater., 2009, vol. 384, pp. 130–139.CrossRefGoogle Scholar
  16. 16.
    Morgenstern, A. and Choppin, G.R., Radiochim. Acta, 2002, vol. 90, pp. 69–74.CrossRefGoogle Scholar
  17. 17.
    Ermolaev, B.M., Zakharova, E.V., Mironenko, M.V., Kalmykov, S.N., and Vlasova, I.E., Radiokhimiya, 2006, vol. 8, no. 3, pp. 272–277.Google Scholar
  18. 18.
    Kohler, M., Honeyman, B.D., and Leckie, J.O., Radiochim. Acta, 1999, vol. 85, pp. 33–48.Google Scholar
  19. 19.
    Zhang, H. and Tao, Z., J. Radioanal. Nucl. Chem., 2002, vol. 254, no. 1, pp. 103–107.CrossRefGoogle Scholar
  20. 20.
    McBride, M., Clays Clay Min., 1997, vol. 45, no. 4, pp. 598–608.CrossRefGoogle Scholar
  21. 21.
    Bradbury, M.H. and Baeyens, B., Surface Complexation Modelling, Lutzenkirchen, J., Ed., London: Academic, 2006, pp. 518–538.CrossRefGoogle Scholar
  22. 22.
    Bradbury, M.H. and Baeyens, B., Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 1004–1013.CrossRefGoogle Scholar
  23. 23.
    Hachiya, K., Sasaki, M.M., Saruta, Y., Mikami, N., and Yasumaga, T., J. Phys. Chem., 1984, vol. 88, pp. 23–27.CrossRefGoogle Scholar
  24. 24.
    Balistieri, L., Brewer, P., and Murray, J., Deep Sea Res., 1981, vol. 28A, pp. 101–121.Google Scholar
  25. 25.
    Righetto, L., Bodoglio, G., Azimonti, G., and Bellobono, I., Environ. Sci. Technol., 1991, vol. 25, pp. 1913–1919.CrossRefGoogle Scholar
  26. 26.
    Music, S., Gessner, M., and Wolf, R., Radiochim. Acta, 1979, vol. 26, pp. 51–53.Google Scholar
  27. 27.
    Rabung, T., Geckeis, H., Kim, J., and Beck, H., J. Colloid Interface Sci., 1998, vol. 208, pp. 153–161.CrossRefGoogle Scholar
  28. 28.
    Marmier, N., Dumonceau, J., and Fromage, F., J. Contam. Hydrol., 1997, vol. 26, pp. 159–167.CrossRefGoogle Scholar
  29. 29.
    Marmier, N. and Fromage, F., J. Colloid Interface Sci., 1999, vol. 212, pp. 252–263.CrossRefGoogle Scholar
  30. 30.
    Stumm, W., Chemistry of the Solid-Water Interface. Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, New York: Wiley-Interscience, 1992.Google Scholar
  31. 31.
    Davis, J.A. and Kent, D.B., Surface Complexation Modeling in Aqueous Geochemistry in Mineral-Water Interface Geochemistry: Reviews in Mineralogy, Washington: Miner. Soc. Am., 1990, vol. 23, pp. 177–260.Google Scholar
  32. 32.
    Kohler, M., Curtis, G.P., Kent, D.B., and Davis, J.A., Water Resour. Res., 1996, vol. 32, pp. 3539–3551.CrossRefGoogle Scholar
  33. 33.
    Sposito, G., The Surface Chemistry of Soils, New York: Oxford Univ. Press, 1984, pp. 5–47.Google Scholar
  34. 34.
    Cromieres, L., Moulin, V., Fourest, B., and Guillaumont, R., Radiochim. Acta, 1998, vol. 88, pp. 249–255.Google Scholar
  35. 35.
    Girvin, D.C., Ames, L.L., Schwab, A.P., and McGarrah, J.E., J. Colloid Interface Sci., 1991, vol. 141, pp. 67–78.CrossRefGoogle Scholar
  36. 36.
    Naveau, A., Monteil-Rivera, F., Dumonceau, J., and Boudesocque, S., J. Contam. Hydrol., 2005, vol. 77, pp. 1–16.CrossRefGoogle Scholar
  37. 37.
    Nakata, K., Nagasaki, S, Tanaka, S., Sakamoto, Y., Tanaka, T., and Ogawa, H., Radiochim. Acta, 2002, vol. 90, pp. 665–669.CrossRefGoogle Scholar
  38. 38.
    Missana T., Garcia-Gutierrez M., and Fernndez V., Geochim. Cosmochim. Acta, 2003, vol. 67, no. 14, pp. 2543–2550.CrossRefGoogle Scholar
  39. 39.
    Morgenstern, A. and Choppin, G.R., Radiochim. Acta, 2002, vol. 90, pp. 69–74.CrossRefGoogle Scholar
  40. 40.
    Keeney-Kennicutt, W.L. and Morse, J.W., Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 2577–2588.CrossRefGoogle Scholar
  41. 41.
    Powell, B.A., Duff, M.C., Kaplan, D.I., Fjeld, R.A., Newville, M., Hunter, D.B., Bertsch, P.M., Coates, J.T., Eng, P., Rivers, M.L., Serkiz, S.M., Sutton, St.R., Triay, In.R., and Vaniman, D.T., Environ. Sci. Technol., 2006, vol. 40, pp. 3508–3514.CrossRefGoogle Scholar
  42. 42.
    Khasanova, A.B., Kalmykov, S.N., Shcherbina, N.S., Teterin, Yu.A., and Novikov, A.P., Radiokhimiya, 2007, vol. 49, no. 4, pp. 367–372.Google Scholar
  43. 43.
    Sanchez, A.L., Murray, J.W., and Sibley, T.H., Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 2297–2307.CrossRefGoogle Scholar
  44. 44.
    Powell B., Fjeld R., Kaplan D., Coates J., and Serkiz S., Environ. Sci. Technol., 2005, vol. 39, pp. 2107–2114.CrossRefGoogle Scholar
  45. 45.
    Silver, G.L., J. Radioanalyt. Nucl. Chem., 2000, vol. 246, no. 2, pp. 429–431.CrossRefGoogle Scholar
  46. 46.
    Brown, G., Henrich, V., Casey, W., et al., J. Chem. Rev., 1999, vol. 99, pp. 77–174.CrossRefGoogle Scholar
  47. 47.
    Schwertmann, U. and Cornell, R., Iron Oxides in the Laboratory, Weinheim: Wiley-VCH, 1991.Google Scholar
  48. 48.
    Becker, U., Rosso, K., and Hochella, M., Geochim. Cosmochim. Acta, 2001, vol. 65, no. 16, pp. 2641–2649.CrossRefGoogle Scholar
  49. 49.
    Eletand, V. and Bidoglio, G., Environ. Sci. Technol., 1998, vol. 32, pp. 3155–3161.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. Yu. Romanchuk
    • 1
  • S. N. Kalmykov
    • 1
  • A. P. Novikov
    • 2
  • E. V. Zakharova
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Vernadskii Institute of Geochemistry and Analytical ChemistryMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations