Skip to main content
Log in

CARBEX process, a new technology of reprocessing of spent nuclear fuel

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Advances in the CARBEX process, a new aqueous chemical method for reprocessing of spent nuclear fuel (SNF) in carbonate media, are considered. A review of carbonate methods for SNF reprocessing is given. The CARBEX process concept is presented and experimental data for every stage of the CARBEX process: high-temperature oxidation of spent fuel composition, its oxidative dissolution in carbonate aqueous solutions, extraction refining of U(VI) and Pu(VI), solid-phase re-extraction of carbonate complexes of U(VI) and Pu(VI), and obtaining of uranium and plutonium dioxide powders for fabrication of ceramic nuclear fuel, are discussed. It was shown that the CARBEX process can be more effective and safe than the well-known industrial PUREX process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radiokhimicheskaya pererabotka yadernogo topliva AES (Radiochemical Reprocessing of Nuclear Fuel of Nuclear Power Plants), Moscow: Energoatomizdat, 1983.

  2. Zil’berman, B.Ya., Radiokhimiya, 2000, vol. 42, no. 1, pp. 3–15.

    Google Scholar 

  3. Zil’berman, B.Ya., Puzikov, E.A., Ryabkov, D.V., et al., Atom. Energ., 2009, vol. 107, no. 5, pp. 273–285.

    Google Scholar 

  4. Iso, S., Meguro, Y., and Yoshida, Z., Recent Progress in Actinides Separation Chemistry, Yoshida, Z., Kimura, T., and Meguro, Y., Proc. Workshop on Actinides Solutions Chemistry WACK’94, 1994, pp. 237–246.

  5. Samsonov, M., Trofimov, N., Myasoedov, B., et al., J. Nucl. Sci. Technol., Suppl. 3, November 2002, pp. 263–266.

  6. Mefod’eva, M.P. and Krot, N.N., Soedineniya transuranovykh elementov (Compounds of Transuranium Elements), Moscow: Nauka, 1987.

    Google Scholar 

  7. Ueno, K. and Saito, A., Anal. Chim. Acta, 1971, vol. 56, no. 3, pp. 427–434.

    Article  CAS  Google Scholar 

  8. Asano, Y. and Tomiyasu, H., Proc. 2nd Japan-Korea Seminar on Advanced Reactors, 1996, pp. 175–182.

  9. Tomiyasu, H. and Asano, Y., Prog. Nuclear Energy, 1998, vol. 32, issues 3–4, pp. 421–427.

    Article  CAS  Google Scholar 

  10. Asanuma, N., Asano, Yu., and Tomiyasu, H., RECOD 98. 5 Int. Conf. on Recycling, Conditioning and Disposal, Paris: SFEN, 1998, pp. 709–716.

    Google Scholar 

  11. Asanuma, N., Harada, M., Ikeda, Y., and Tomiyasu, H., J. Nucl. Sci. Technol., vol. 38, no. 10, pp. 866–871.

  12. Nogami, M., Kim, S.-Y., Asanuma, N., and Ikeda, Y., J. Alloys Compds.., 2004, vol. 374, nos. 1–2, pp. 269–271.

    Article  CAS  Google Scholar 

  13. Goff, G.S., Taw, F.L., Peper, Sh.M., et al., Los Alamos Natl. Lab. AIChE Annual Meeting, 2006, no. NM 87545.

  14. Goff, G.S., Brodnax, L.F., Cisneros, M.R., and Runde, W.H., Los Alamos Natl. Lab. AIChE Annual Meeting, 2007, no. 11-06-07.

  15. Goff, G.S., Brodnax, L.F., Cisneros, M.R., et al., Los Alamos Natl. Lab. AIChE Annual Meeting, 2007, no. 11-07-07.

  16. Peper, Sh.M., Brodnax, L.F., Field, S.E., et al., Ind. Eng. Chem. Res., 2004, vol. 43, no. 26, pp. 8188–8193.

    Article  CAS  Google Scholar 

  17. Goff, G.S., Brodnax, L.F., Cisneros, M.R., et al., J. Inorg. Chem., 2008, vol. 47, no. 6, pp. 1984–1990.

    Article  CAS  Google Scholar 

  18. Smith, S.C., Peper, Sh.M., Douglas, M., et al., J. Radioanal. Nucl. Chem., 2009, vol. 282, no. 2, pp. 617–621.

    Article  CAS  Google Scholar 

  19. Kim, K.W., Kim, Y.H., Kim, S.M., et al., NRC7-Seventh Int. Conf. Nucl. and Radiochem. Annual Meeting, 2008, Abs. 259.

  20. Kim, K.W., Kim, Y.H., Lee, S.Y., et al., J. Environ. Sci. Technol., 2009, vol. 43, no. 7, pp. 2355–2361.

    Article  CAS  Google Scholar 

  21. Kim, K.W., Chung, D.Y., Yang, H.B., et al., GLOBAL 2009, Annual Meeting, paper 9429.

  22. Kim, K.W., Kim, Y.H., Lee, S.Y., et al., J. Ind. Eng. Chem. Res., 2009, vol. 48, pp. 2085–2092

    Article  CAS  Google Scholar 

  23. Lee, E.H., Lim, J.K., Chung, D.-Y., et al., J. Radioanal. Nucl. Chem., 2010, vol. 283, no. 3, pp. 339–346.

    Google Scholar 

  24. Stepanov, S.I. and Chekmarev, A.M., Dokl. Ross. Akad. Nauk, 2008, vol. 423, no. 1, pp. 1–3.

    Google Scholar 

  25. Beznosyuk, V.I., Galkin, B.Ya., Kolyadin, A.B., et al., Radiokhimiya, 2007, vol. 49, no. 4, pp. 334–338.

    Google Scholar 

  26. Volkovich, V., Griffiths, T., Fray, D., et al., J. Chem. Soc. Faraday Trans., 1996, vol. 92, no. 24, pp. 5059–5065.

    Article  CAS  Google Scholar 

  27. Volkovich, V., Griffiths, T., Fray, D., et al., Ibid., 1997, vol. 93, no. 21, pp. 3819–3826.

    CAS  Google Scholar 

  28. Volkovich, V., Griffiths, T., Fray, D., et al., Phys. Chem. Chem. Phys., 2000, vol. 2, no. 13, pp. 3029–3035.

    Article  CAS  Google Scholar 

  29. Vazhenkov, M.V., Boyarintsev, A.V., Stepanov, S.I., and Chekmarev, A.M., Usp. Khim. Khim. Tekhnol.: Sb. Nauch. Tr. RKhTU im D.I. Mendeleeva, 2008, vol. XXII, no. 8 (88), pp. 38–41.

    Google Scholar 

  30. Vazhenkov, M.V., Stepanov, S. I., Boyarintsev, A.V., and Chekmarev, A.M., Ibid., 2009, vol. XXIII, no. 9 (102), pp. 25–30.

    Google Scholar 

  31. Stepanov, S.I., Boyarintsev, A.V., and Chekmarev, A.M., Dokl. Ross. Akad. Nauk, 2009, vol. 427, no. 6, pp. 793–797.

    Google Scholar 

  32. Stepanov, S.I., Boyarintsev, A.V., and Chekmarev, A.M., Abstracts of Papers, Nauchno-tekh. soveshchanie “Uran Rossii” (Scientific and Technical Meeting “Uranium of Russia”, Moscow, November 20–21, 2007, Moscow: TsNIIATOMINFORM, 2008, pp. 168–176.

    Google Scholar 

  33. Nikonov, M.V., Tananaev, I.G., and Myasoedov, B.F., Radiokhimiya, 2010, vol. 52, no. 1, pp. 26–28.

    Google Scholar 

  34. Soderquist, Ch. and Hanson, B., J. Nucl. Mater., 2010, vol. 396, nos. 2–3, pp. 159–162.

    Article  CAS  Google Scholar 

  35. Stepanov, S.I. and Chekmarev, A.M., Ekstraktsiya redkikh metallov solyami chetvertichnyh ammonievykh osnovanii (Extraction of Rare Metals with Quaternary Ammonium Salts), Moscow: IzdAT, 2004.

    Google Scholar 

  36. Nazarov, E.O., Boyarintsev, A.V., Safiulina, A.M., et. al., Abstracts of Papers, Shestaya Ross. konf. po radioshimiis “Radiokhimiya-2009” (Sixth Russian Conf. on Radiochemistry “Radiochemistry 2009”), Moscow, October 12–16, 2009, Ozersk: Mayak Production Association, 2009, p. 128.

    Google Scholar 

  37. Gromov, B.V., Vvedenie v khimicheskuyu tekhnologiyu urana (Introduction into the Chemical Technology of Uranium), Moscow: Nauka, 1978.

    Google Scholar 

  38. Maiorov, A.A. and Braverman, I.B., Tekhnologiya polucheniya poroshkov keramicheskoi dvuokisi urana (Production Technology of Ceramic Uranium Dioxide Powders), Moscow: Energoatomizdat, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Stepanov.

Additional information

Original Russian Text © S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, Hen Vin So, A.M. Chekmarev, A.Yu. Civadze, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 54, No. 3, pp. 25–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanov, S.I., Boyarintsev, A.V., Vazhenkov, M.V. et al. CARBEX process, a new technology of reprocessing of spent nuclear fuel. Russ J Gen Chem 81, 1949 (2011). https://doi.org/10.1134/S1070363211090404

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S1070363211090404

Keywords

Navigation