Skip to main content
Log in

The features of structurization of the dilute aqueous solution of lithium chloride at the near-critical and supercritical conditions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Method of integral equations in the RISM approximation was used for the study of the structural properties of the dilute aqueous solution of lithium chloride in the near-critical and supercritical state. The following general trends of structural changes in the solution at its transition from the standard conditions to the supercritical conditions were revealed: destruction of the solvent tetrahedral lattice, thermal dehydration of the cation and anion, and an increase in the contact association. We found that the effect of temperature on the decrease in the fraction of the hydrogen-bonded solvent molecules and the value of the thermal dehydration of the ions is comparable with the influence of the density on the same characteristics. The process of ion association is affected predominantly by temperature, the effect is maximal in the subcritical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chialvo, A.A. and Cummings, P.T., Advances in Chemical Physics, Prigogine, I. and Rice, S.A., Eds., 1999, vol. 109, p. 115.

  2. Fedotova, M.V., Zh. Obshch. Khim., 2006, vol. 76, no. 12, p. 1979.

    Google Scholar 

  3. Fedotova, M.V., J. Mol. Liq., 2008, vol. 143, no. 1, p. 35.

    Article  CAS  Google Scholar 

  4. Fedotova, M.V., Zh. Fiz. Khim., 2008, vol. 82, no. 11, p. 2181.

    Google Scholar 

  5. Fedotova, M.V., Zh. Obshch. Khim., 2009, vol. 79, no. 9, p. 1429.

    Google Scholar 

  6. Fedotova, M.V., Zh. Fiz. Khim., 2009, vol. 83, no. 12, p. 2391.

    Google Scholar 

  7. Yamaguchi, T., Yamagami, M., Ohzono, H., Wakita, H., and Yamanaka, K., Chem. Phys. Lett., 1996, vol. 252, nos. 5–6, p. 317.

    Article  Google Scholar 

  8. Yamaguchi, T., J. Mol. Liq., 1998, vol. 78, nos. 1–2, p. 43.

    Article  CAS  Google Scholar 

  9. Yamaguchi, T. and Soper, A.K., J. Chem. Phys., 1999, vol. 110, no. 7, p. 3529.

    Article  CAS  Google Scholar 

  10. Yamaguchi, T., Ohzono, H., Yamagami, M., Yamanaka, K., Yoshida, K., and Wakita, H., J. Mol. Liq., 2010, vol. 153, no. 1, p. 2.

    Article  CAS  Google Scholar 

  11. Zhang, Z. and Duan, Z., Chemical Physics, 2004, vol. 297, no. 1, p. 221.

    Article  CAS  Google Scholar 

  12. Zimmerman, G.H., Gruszkiewicz, M.S, and Wood, R.H., J. Phys. Chem., 1995, vol. 99, no. 29, p. 11612.

    Article  CAS  Google Scholar 

  13. Ho, C. and Palmer, D.A., J. Chem. Eng. Data., 1998, vol. 43, no. 2, p. 162.

    Article  CAS  Google Scholar 

  14. Mangold, K. and Franck, E.U., Ber. Bunsenges., Phys. Chem., 1969, vol. 73, p. 21.

    CAS  Google Scholar 

  15. Chandler, D. and Andersen, H.C., J. Chem. Phys., 1972, vol. 57, no. 5, p., 1930.

    Article  CAS  Google Scholar 

  16. Hirata, F., Molecular Theory of Solvation, Dordrecht: Kluwer Academic, 2003.

    Google Scholar 

  17. Holovko, M.F. and Kalyuzhnyi, Yu.V., Mol. Phys., 1989, vol. 68, no. 6, p. 1239.

    Article  Google Scholar 

  18. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, 3nd ed., New York: Academic Press, 2006.

    Google Scholar 

  19. Labic, S., Malijevsky, A., and Vonka, P., Mol. Phys., 1985, vol. 56, no. 3, p. 709.

    Article  Google Scholar 

  20. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, W.F., Jerusalem Symp. on Quantum Chem. and Biochem., Pullman, B., Ed., Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  21. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1982, vol. 77, no. 3, p. 1451.

    Article  CAS  Google Scholar 

  22. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5836.

    Article  CAS  Google Scholar 

  23. Bondarenko, G.V., Gorbaty, Yu.E., Okhulkov, A.V., and Kalinichev, A.G., J. Phys. Chem., A., 2006, vol. 100, no. 11, p. 4042.

    Article  Google Scholar 

  24. Balbuena, P.B., Johnston, K.P., and Rossky, P.J., J. Phys. Chem., 1996, vol. 100, no. 7, p. 2706.

    Article  CAS  Google Scholar 

  25. Cui, S.T. and Harris, J.G., Chem. Eng. Sci., 1994, vol. 49, no. 17, p. 2749.

    Article  CAS  Google Scholar 

  26. Fedotova, M.V. and Gavrilova, E.L., Zh. Obshch. Khim., 2009, vol. 79, no. 1, p. 9.

    Google Scholar 

  27. Fedotova, M.V., J. Mol. Liq., 2010, vol. 153, no. 1, p. 9.

    Article  CAS  Google Scholar 

  28. de Jong, P.H.K., Neilson, G.W., and Bellisent-Funel, M.C., J. Phys. Chem., 1996, vol. 105, no. 12, p. 5155.

    Article  Google Scholar 

  29. Fulton, J.L., Pfund, D.M., Wallen, S.L, Newville, M., and Stern, E.A., J. Chem. Phys., 1996, vol. 105, no. 6, p. 2161.

    Article  CAS  Google Scholar 

  30. Wallen, S.L., Palmer, B.J., Pfund, D., M., Fulton, J.L., Newville, M., Ma, Y., and Stern, E.A., J. Phys. Chem., A, 1997, vol. 101, no. 50, p. 9632.

    Article  CAS  Google Scholar 

  31. Pfund, M., Darab, J.C., Fulton, J.L., and Ma, Y., J. Phys. Chem., 1994, vol. 98, no. 50, p. 13102.

    Article  CAS  Google Scholar 

  32. Flanagin, L.W., Balbuena, P.B., Johnston, K.P., and Rossky, P.J., J. Phys. Chem., 1995, vol. 99, no. 14, p. 5196.

    Article  CAS  Google Scholar 

  33. Reagan, M.T., Harris, J.G., and Tester, W.J., J. Phys. Chem., B, 1999, vol. 103, no. 37, p. 7935.

    Article  CAS  Google Scholar 

  34. Oelkers, E.H. and Helgeson, H.C., Geochim. Cosmochim. Acta, 1991, vol. 55, no. 5, p. 1235.

    Article  CAS  Google Scholar 

  35. Marshall, W.L. and Franck, E.U., J. Phys. Chem. Ref. Data, 1981, vol. 10, no. 2, p. 295.

    Article  CAS  Google Scholar 

  36. Franck, E.U., Rosenzweig, S., and Christoforakos, M., Ber. Bunsenges., Phys. Chem., 1990, vol. 94, p. 199.

    CAS  Google Scholar 

  37. Reagan, M.T., Harris, J.G., and Tester, W.J., J. Phys. Chem., B, 1999, vol. 103, no. 37, p. 7935.

    Article  CAS  Google Scholar 

  38. Oelkers E.H. and Helgeson, H.C., Geochim. Cosmochim. Acta, 1991, vol. 55, no. 5, p. 1235.

    Article  CAS  Google Scholar 

  39. Marshall, W.L. and Franck, E.U., J. Phys. Chem. Ref. Data, 1981, vol. 10, no. 2, p. 295.

    Article  CAS  Google Scholar 

  40. Franck, E.U., Rosenzweig, S., and Christoforakos, M., Ber. Bunsenges.: Phys. Chem., 1990, vol. 94, p. 199.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Fedotova.

Additional information

Original Russian Text © M.V. Fedotova, 2011, published in Zhurnal Obshchei Khimii, 2011, Vol. 81, No. 7, pp. 1067–1073.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, M.V. The features of structurization of the dilute aqueous solution of lithium chloride at the near-critical and supercritical conditions. Russ J Gen Chem 81, 1417–1423 (2011). https://doi.org/10.1134/S1070363211070036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363211070036

Keywords

Navigation