Skip to main content
Log in

Theoretical study of the models of Ca2+ and Mg2+ ions binding by the methylidene rhodanine neutral and anionic forms

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The equilibrium geometry and energy parameters of the complexes of Ca2+ and Mg2+ with 5-methyl-2-thioxotiazolidin-4-one (methylidene rhodanine) and its anion in a 1:1 ratio in different conformations were calculated by the quantum-chemical method with the density functional theory on the level of hybrid functional B3LYP in the basis of atomic orbitals 6–31+G(d). The influence of metal ion size on the number of possible isomeric coordinations was indicated. The principles of stabilization and destabilization of the structures depending on their conformations al structure were described. Based on the calculated equilibrium geometry parameters of the complexes conformations the effect of complexation on the structure of rhodanine ligand was elucidated. In the framework of a polarizable continuum the relative stability of the possible tautomeric forms of methylidene rhodanine in water was investigated. A new structure of the methylidene rhodanine anion distinquished by a specific distribution of negative charge is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryk, R., Gold, B., Venugopal, A., Singh, J., Sam, y R., Pupek, K., Cao, H., Popescu, C., Gurney, M., Hotha, S., Cherian, J., Rhee, K., Ly, L., Converse, P.J., Ehrt, S., Vandal, O., Jiang, X., Schneider, J., Lin, G., and Nathan, C., Cell Host & Microbe, 2008, vol. 3, no. 3, p. 137.

    Article  CAS  Google Scholar 

  2. Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F.M., Enrize, R.D., and Zacchinoa, S.A., Bioorg. & Med. Chem., 2007, vol. 15, no. 1, pp. 484–494.

    Article  CAS  Google Scholar 

  3. Orchard, M.G., Neuss, J.C., Galley, C.M.S., Carr, A., Porter, D.W., Smith, P., Scopes, D.I.C., Haydon, D., Vousden, K., Stubberfield, C.R., Young, K., and Page, M., Bioorg. & Med. Chem. Lett., 2004, vol. 14, no. 15, pp. 3975–3978.

    Article  CAS  Google Scholar 

  4. Dolezel, J., Hirsova, P., Opletalova, V., Dohnal, J., Marcela, V., Kunes, J., and Jampilek, J., Molecules, 2009, vol. 14, no. 10, pp. 4197–4212.

    Article  CAS  Google Scholar 

  5. Lesyk, R.B., Zimenkovsky, B.S., and Troc’ko, N.Y., Ukrainica Bioorganica Acta, 2004, vol. 1, pp. 29–38.

    CAS  Google Scholar 

  6. Russell, A.J., Westwood, I.M., Crawford, M.H.J., Robinson, J., Kawamura, A., Redfield, C., Laurieri, N., Lowe, E.D., Davies, S.G., and Sim, E., Bioorg. and Med. Chem., 2009, vol. 17, no. 2, pp. 905–918.

    Article  CAS  Google Scholar 

  7. Verma, A. and Saraf, S.K., Europp. J. Med. Chem., 2008, vol. 43, pp. 897–905.

    Article  CAS  Google Scholar 

  8. Irvine, M.W., Patrick, G.L., Kewney, J., Hastings, S.F., and MacKenzie, S.J., Bioorg. & Med. Chem. Lett., 2008, vol. 18, no. 6, pp. 2032–2037.

    Article  CAS  Google Scholar 

  9. Loncharich, R.J., Nissen, J.S., and Boyd, D.B., Struct. Chem., 1996, vol. 7, no. 1, pp. 37–49.

    Article  CAS  Google Scholar 

  10. Fabretti, A.C., Franchini, G., Peyronel, G., and Ferrari, M., Polyhedron, 1982, vol. 1, nos. 7–8, pp. 633–635.

    Article  CAS  Google Scholar 

  11. Zaki, M.T.M., Abdel-Rahman, R.M., and El-Sayed, A.Y., Anal. Chim. Acta, 1995, vol. 307, pp. 127–138.

    Article  CAS  Google Scholar 

  12. Tang, E., Yang, G., and Yin, J., Spectrochimica Acta, Part A, 2003, vol. 59, no. 3, pp. 651–656.

    Article  CAS  Google Scholar 

  13. Boyd, D.B., J. Mol. Struct.: Theochem, 1997, vol. 401, no. 3, pp. 227–234.

    Article  CAS  Google Scholar 

  14. Dewar, M.J.S. and Theil, W., J. Am. Chem. Soc., 1977, vol. 99, no. 15, pp. 4899–4907.

    Article  CAS  Google Scholar 

  15. Stewart, J.J.P., J. Comp. Chem., 1989, vol. 10, no. 2, pp. 209–220.

    Article  CAS  Google Scholar 

  16. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652.

    Article  CAS  Google Scholar 

  17. Lee, C., Yang, W., and Parr, R.G., Phys. Rev., B, 1988, vol. 37, no. 2, pp. 785–789.

    Article  CAS  Google Scholar 

  18. Francl, M.M., Petro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., and Pople, J.A., J. Chem. Phys., 1982, vol. 77, no. 7, pp. 3654–3665.

    Article  CAS  Google Scholar 

  19. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, no. 1, pp. 650–654.

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomeri, J.A Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G, Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  21. Ray, J., Panja, N., Nandi, P.K., Martin, J.J., and Jones, W.E., J. Mol. Struct., 2008, vol. 874, nos. 1–3, pp. 121–127.

    Article  CAS  Google Scholar 

  22. Al-Sehemi, A.G. and El-Gogary, T.M., J. Mol. Struct.: Theochem, 2009, vol. 907, nos. 1–3, pp. 66–73.

    Article  CAS  Google Scholar 

  23. Shahwar, D., Tahir, M.N., Raza, M.A., Iqbal, B., and Naz, S., Acta Cryst., 2009, vol. 65, no. 11, p. o2637.

    Google Scholar 

  24. Barreiro, E., Casas, J.S., Couce, M.D., Sánchez, A., Sordo, J., Varela, J.M., and Vázquez-López, E.M., Cryst. Growth & Design., 2007, vol. 7, no. 10, pp. 1964–1973.

    Article  CAS  Google Scholar 

  25. Tahmassebi, D., J. Mol. Struct.: Theochem., 2003, vol. 638, nos. 1–3, pp. 11–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Baryshnikov.

Additional information

Original Russian Text © G.V. Baryshnikov, B.F. Minaev, V.A. Minaeva, 2011, published in Zhurnal Obshchei Khimii, 2011, Vol. 81, No. 3, pp. 481–490.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshnikov, G.V., Minaev, B.F. & Minaeva, V.A. Theoretical study of the models of Ca2+ and Mg2+ ions binding by the methylidene rhodanine neutral and anionic forms. Russ J Gen Chem 81, 576–585 (2011). https://doi.org/10.1134/S1070363211030248

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363211030248

Keywords

Navigation