Skip to main content

Air oxidation of organic compounds in aqueous solutions. Ecochemical and analytical aspects

Abstract

The results of static and dynamic laboratory experiments confirm the oxidation of organic compounds in aquatic medium by dissolved oxygen of atmospheric air to be possible under conditions close to normal. Alkylaromatics containing hydrogen atoms in alkyl substituents in α-positions to the aromatic system, as well as simple ethers, are characterised by the highest chemical reactivity in relation to triplet (3Σ g ) which is consistent with the pattern of free-radical reactions. Principal environmental and analytical consequences of the obtained results are under discussion. Liquid-phase free-radical reactions of atmospheric oxygen may proceed with the participation of atmospheric aerosols, i.e water droplets within clouds. Another example relates to the prevention of accumulation in natural bodies of water stable nonylphenol (predominantly 4-tert-isomers), characterized by endocrine activity. Suggested the possibility of replacing them with secondary alkylphenols, identical in all chemical properties except for the ease of oxidation by air oxygen in aqueous solutions

This is a preview of subscription content, access via your institution.

References

  1. Drugov, Yu.S., Ecologicheskaya analiticheskaya khimia (Ecological Analytical Chemistry), St. Petersburg: Anatolia, 2000.

    Google Scholar 

  2. Isidorov, V.A., Ecologicheskaya khimia (Ecological Chemistry), St. Petersburg: Khimizdat, 2001.

    Google Scholar 

  3. Isidorov, V.A., Organichaeskaya khimia atmosferi (Organic Chemistry of Atmosphere), St. Petersburg: Khimia, 1985; St. Petersburg: Khimia, 2nd ed., 1992; St. Petersburg: Khimizdat, 3rd ed., 2001.

    Google Scholar 

  4. Ioffe, B.V., Kuznetsov, M.A., and Potekhin, A.A., Khimia organichaeskich proizvodnich gidrasina (Chemistry of Organic Derivatives of Hydrazine), Leningrad: Khimia, 1979.

    Google Scholar 

  5. Kutnevich, A.N., Rudenko, A.P., Rodina, L.L., and Pragst, F., Zh. Org. Khim., 1978, vol. 14, no. 14, p. 1343.

    CAS  Google Scholar 

  6. Korobitsina, I.K., Gurevich, L.C., and Rodina, L.L., Zh. Org. Khim., 1969, vol. 5, no. 6, p. 567.

    Google Scholar 

  7. Shimizu, M., Orita, H., Suzuki, K., Hayakawa, T., Hamakawa, S., and Takehira, K., J. Mol. Catal. A: Chemical, 1996, no. 114, p. 217.

  8. Zenkevich, I.G., Eschenko, A.Yu., Makarova, S.V., Vitenberg, A.G., Dobryakov, Yu.G., and Utsal, V.A., Molecules, 2007, vol. 12, no. 2, p. 654.

    CAS  Article  Google Scholar 

  9. Gushchina, S.V., Kosman, V.M., and Zenkevich, I.G., Vestnik Sankt-Peterburgskogo universiteta, Seriya Fisiki i Khimii (Bulletin of St. Petersburg University, Ser. of physics and chemistry), 2009, no 1, p. 96.

  10. Zenkevich, I.G. and Gushchina, S.V., Zh. Anal. Khim., 2009, vol. 65, no. 4, p. 371.

    Google Scholar 

  11. Player, M.E., Kim, H.J., Lee, H.O., and Min, D.B., J. Food Sci., 2006, vol. 71, no. 8, p. 456.

    Article  Google Scholar 

  12. Vidal-Valverde, C., Ruiz, R., and Medrano, A., J. Dairy Sci., 1993, vol. 76, no. 6, p. 1520.

    CAS  Article  Google Scholar 

  13. http://www.thermidaire.on.ca/do.html (access. January 2010).

  14. http://www.engineeringtoolbox.com/oxygen-solubilitywater-d_841.htm (access. January 2010).

  15. Vesilind, P.A., Introduction to Environment Engineering, Boston: PWS Publ. Comp., 1996.

    Google Scholar 

  16. Golovanov, I.B. and Zhenodarova, S.M., Zh. Obshch. Khim., 2005, vol. 75, no. 11, p. 1879.

    Google Scholar 

  17. Hansch, C. and Leo, A.J., Substituent Constants for Correlation Analysis in Chemistry and Biology, New York: John Wiley, 1979.

    Google Scholar 

  18. Battino, R., Rettich, T.R., and Tominaga, T., J. Phys. Chem. Ref. Data, 1983, vol. 12, no. 2, p. 163.

    CAS  Article  Google Scholar 

  19. Skorobogatov, G.A. and Kalinin, A.I., Ostorojno! Vodoprovodnaya Voda (Careful! Portable water), St. Petersburg: St. Petersburg State University, 2003.

    Google Scholar 

  20. Stephens, H.N. and Roduta, F.L., J. Amer. Chem. Soc., 1935, vol. 57, no. 12, p. 2380.

    CAS  Article  Google Scholar 

  21. Emanuel, N.M., Denisov, E.T., and Maizus, Z.K., Zepniye reaktzii okisleniya uglevodorodov v jidkoi fase (Chain Oxidation Reactions of Hydrocarbons in the Liquid Phase), Moscow: Nauka, 1965.

    Google Scholar 

  22. Suresh, A.K., Sharma, M.M., and Sridhar, T., Ind. End. Chem. Res., 2000, vol. 39, no.11, p. 3958.

    CAS  Article  Google Scholar 

  23. Rao, T.S.S. and Awasthi, S., Europ. J. Chem. (http://www.e-journals.net), 2007, vol. 4, no. 1, p. 1.

    Google Scholar 

  24. Barton, D.H.R. and Doller, D., Acc. Chem. Res., 1992, no. 25, p. 504.

  25. Sinelnikov, V.E., Mechnism samoochischeniya vodoemov (Self-cleaning of Water Reservoirs), Moscow: Stroyizdat, 1980.

    Google Scholar 

  26. Ioffe, B.V. and Vitenberg, A.G., Head-space Analysis & Related Methods in Gas Chromatography, New York: Wiley-Intersci. Publ., 1982.

    Google Scholar 

  27. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoyi khimii (Reference Book on Inorganic Chemistry), Moscow: Khimia, 1987.

    Google Scholar 

  28. Isaacs, N.S., Experiments in Physical Organic Chemistry. London: The MacMillan Comp., 1969; Russian translation, Moscow: Mir, 1972.

    Google Scholar 

  29. Zenkevich, I.G., J. Chemometr., 2010, no. 24, p. 158.

  30. Luxenhofer, O. and Ballschmiter, K., Fresenius J. Anal. Chem., 1994, no. 350, p. 395.

  31. Egazar’yants, S.V., Karakhanov, E.A., and Maksimov, A.L., Abstr. VIII Symp. Liquid Chromatogr., Moscow, 2006, p. 124.

  32. Plesnicar, B., Acta Chim. Slov. 2005, no. 52, p. 1.

  33. Zenkevich, I.G., Ishenko, E.V., Makarov, V.G., Makarova, M.N., and Selezneva, A.I., Zh. Obshch. Khim., 2008, vol. 78, no. 9, p. 1449.

    Google Scholar 

  34. Vazqyez-Duhalt, R., Marqyez-Rocha, F., Ponce, E., Licea, A.F., and Viana, M.T., Appl. Ecol. Environ. Res., 2005, vol. 4, no. 1, p. 1.

    Google Scholar 

  35. Thiele, B., Gunther, K., and Schwuger, M.J., Chem. Rev., 1997, vol. 97, no. 8, p. 3247.

    CAS  Article  Google Scholar 

  36. Davi, M.L. and Gnudi, F., Water Res., 1999, vol. 33, no. 14, p. 3213.

    CAS  Article  Google Scholar 

  37. Saito, H., Uchiyama, T., Makino, M., Katase, T., Fujimoto, Y., and Hashizume, D., J. Health Sci., 2007, vol. 53, no. 2, p. 177.

    CAS  Article  Google Scholar 

  38. Zenkevich, I.G., Makarov, A.A., Schrader, S., and Moeder, M., J. Chromatogr. A., 2009, no. 1216, p. 4097.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.G. Zenkevich, E.V. Ishchenko, A.A. Makarov, O.E. Sonchik, 2010, published in Ekologicheskaya Khimiya, 2010, Vol. 19, No. 1, pp. 1–13.

Zenkevich Igor Georgievich, Dr. Sci. (Chem.), Professor, Head of the Laboratory of Gas Chromatography, Department of Chemistry, St. Petersburg State University. Areas of scientific interests: Chromatography, Hyphenated techniques, Identification of analytes, Precalculation of analytical parameters, Chemometrics, Oxidation of organic compounds by air oxygen.

Ischenko Evgeny Vyacheslavovich, Graduated student, Department of Chemistry, St. Petersburg State University. The topic of the diploma project (2008) was connected with oxidation of volatile organic com ounds in water solutions by dissolved air oxygen.

Makarov Andrew Aleksandrovich, PhD (Chem.), Engineer of the Laboratory of Gas Chromatography, Department of Chemistry, St. Petersburg State University. Lumex-Marketing Co. (St. Petersburg), Engineer-chemist. Areas of scientific interests: Chromatography, HPLC-analyses.

Sonchik Olga Evgenievna, Graduated Master (Chem.), Department of Chemistry, St. Petersburg State University, Ecros-Balt Corp. (St. Petersburg), specialist in relations with educational organizations. The topic of the masters’ dissertation (2009) was connected with oxidation of alkyl phenols in water solutions by dissolved air oxygen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zenkevich, I.G., Ishchenko, E.V., Makarov, A.A. et al. Air oxidation of organic compounds in aqueous solutions. Ecochemical and analytical aspects. Russ J Gen Chem 80, 2671–2681 (2010). https://doi.org/10.1134/S1070363210130013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210130013

Keywords

  • Chlorobenzene
  • Thymol
  • Cumene
  • Atmospheric Oxygen
  • Atmospheric Aerosol