Skip to main content
Log in

Aging as a result of the implementation of the phenoptosis program

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

There are two main points of view on the driving force of aging: destructive action of free radicals generated by mitochondria and implementation of the genetic program. The free-radical theory dominating now asserts that there are no specific genes of aging, as the evolutionary theory proves inability of natural selection to differentiate separate individuals by longevity. The concept of programmed aging, named phenoptosis, has no wide recognition, since it contradicts postulates of the evolutionary theory of aging and, moreover, has no mechanism for the implementation of the program. The present review shows the following: (1) contrary to the statement of the evolutionary theory of aging, the species-specific longevity is controlled by selection but the interpopulation one rather than individual; hence, there are specific genes of aging; (2) primarily programmed process causing aging is a decrease in the bioenergetics level; and (3) this causes age-related increase of the level of free radicals. Hence, the free-radical theory should be incorporated into the theory of programmed aging as one of the components. The key diagram of the mechanism of programmed aging is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anisimov, V.N., Usp. Gerontol., 2003, no. 12, pp. 9–27.

  2. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petetrsburg: Nauka, 2003.

    Google Scholar 

  3. Anisimov, V.N., Exp. Gerontol., 2001, vol. 36, pp. 1101–1136.

    Article  CAS  Google Scholar 

  4. Medvedev, Z.A., Biol. Rev., 1990, vol. 65, pp. 375–398.

    Article  CAS  Google Scholar 

  5. Vijg, J., Ann. NY Acad. Sci., 2001, vol. 928, pp. 336–343.

    Google Scholar 

  6. Kirkwood, T.B.L., Mech. Ageing. Dev., 2002, vol. 123, pp. 737–735

    Article  Google Scholar 

  7. Kirkwood, T.B.L., J. Int. Med., 2008, vol. 263, pp. 117–127.

    Article  CAS  Google Scholar 

  8. Skulachev, V.P., Mol. Asp. Med., 1999, vol. 20, pp. 139–184.

    Article  CAS  Google Scholar 

  9. Howes, R.M., Ann. NY Acad. Sci., 2006, vol. 1067, pp. 22–26.

    Article  CAS  Google Scholar 

  10. Wallace, A.R., Natural Selection and Tropical Nature, New Edition with Corrections and Additions, London: MacMillan, 1891.

    Google Scholar 

  11. Weismann, A., Essays upon Heredity and Kinder Biological Problems, Oxford: Clarendon, 1891, 2nd ed., vol. 1.

    Google Scholar 

  12. Medawar, P.B., An Unsolved Problem of Biology, London: Lewis, 1952.

    Google Scholar 

  13. Harman, D., J. Gerontol., 1956, vol. 11, pp. 298–300.

    CAS  Google Scholar 

  14. Williams, G.C., Evolution, 1957, vol. 11, pp. 398–411.

    Article  Google Scholar 

  15. Kirkwood, T.B.L., Nature, 1977, vol. 270, pp. 301–304.

    Article  CAS  Google Scholar 

  16. Rattan, S.I.S., Free Rad. Res., 2006, vol. 40, pp. 1230–1238.

    Article  CAS  Google Scholar 

  17. Trifunovic, A. and Larsson, N.-G., J. Int. Med., 2008, vol. 263, pp. 167–178.

    Article  CAS  Google Scholar 

  18. Hayflick, L., Ann. NY Acad. Sci., 2007, vol. 1100, pp. 1–13.

    Article  CAS  Google Scholar 

  19. Holliday, R., Ibid., 2006, vol. 1067, pp. 1–9.

    Article  Google Scholar 

  20. Barrientos, A., Casademont, J., Rotig, A., Miro, O., Urbano-Marquez, A., Rustin, P., and Gardellach, F., Biochem. Biophys. Res. Commun., 1996, vol. 229, pp. 536–539.

    Article  CAS  Google Scholar 

  21. Hamilton, M.L., Van Remmen, H., Drake, J.A., Yang, H., Guo, Z.M., Kewitt, K., Walter, C.A., and Richardson, A., Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 10469–10474.

    Article  CAS  Google Scholar 

  22. Hayashi, J-I., Ohta, S., Kagawa, Y., Kondo, H., Kaneda, H., Yonekawa, H., Takai, D., and Miyabayashi, S., J. Biol. Chem., 1994, vol. 269, pp. 6878–6883.

    CAS  Google Scholar 

  23. Lightowlers, R.N., Jacobs, H.T., and Kajander, O.A., Trends Genet., 1999, vol. 15, pp. 91–93.

    Article  CAS  Google Scholar 

  24. Rasmussen, U.F., Krustrup, P., Kjaer, M., and Rasmussen, H.N., Exp. Gerontol., 2003, vol. 38, pp. 877–886.

    Article  CAS  Google Scholar 

  25. Isobe, K., Kishino, S., Inoue, K., Takai, D., Hirawake, H., Kita, K., Miyabayash, I. S., and Hayashi, J., J. Biol. Chem., 1997, vol. 272, pp. 12606–12610.

    Article  CAS  Google Scholar 

  26. Isobe, K., Ito, S., Hosaka, H., Iwamura, Y., Kondo, H., Kagawa, Y., and Hayashi, J-I., J. Biol. Chem., 1998, vol. 273, pp. 4601–4606.

    Article  CAS  Google Scholar 

  27. Gilyarov, F.M., Populyatsionnaya ekologiya (Populational Ecology), Moscow: Mosk. Gos. Univ., 1990.

    Google Scholar 

  28. Marry, B.J., Int. J. Biochem. Cell Biol., 2002, vol. 34, pp. 1340–1354.

    Article  Google Scholar 

  29. Skulachev, V.P., Biokhimiya, 1997, vol. 62, pp. 1191–1195.

    CAS  Google Scholar 

  30. Skulachev, V.P., Biokhimiya, 1999, vol. 64, pp. 1418–1426.

    CAS  Google Scholar 

  31. Skulachev, V.P., Exp. Gerontol., 2001, vol. 36, pp. 995–1024.

    Article  CAS  Google Scholar 

  32. Wilson, E.O., BioScience, 1973, vol. 23, pp. 631–638.

    Article  Google Scholar 

  33. Gadgil, M., Proc. Natl. Acad. Sci. USA, 1975, vol. 72, pp. 1199–1201.

    Article  CAS  Google Scholar 

  34. Trubitsyn, A.G., Usp. Gerontol., 2006, vyp. 19, pp. 13–24.

  35. Yablokov, A.V., Populyatsionnaya biologiya (Populational Biology), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  36. White, P.S. and Pickett, S.T.A., The Ecology of Natural Disturbance and Patch Dynamics, Pickett, T.A. and White, P., Eds., London: Academic, 1985, pp. 3–13.

    Google Scholar 

  37. Pickett, S.T.A., White, P.S., Ibid., pp. 371–384.

    Google Scholar 

  38. Southwood, T.R.E., Theoretical Ecology. Principles and Applications, May, R. M., Ed., London: Blackwell, 1981, 2nd ed., pp. 30–52.

    Google Scholar 

  39. Nicholson, A.J., Aust. J. Zool., 1954, vol. 2, pp. 9–65.

    Article  Google Scholar 

  40. Leigh, E.G., Ecology and Evolution of Communities, Cody, M.L. and Diamond, J.M., Eds., Harvard: Harvard Univ. Press, 1975, pp. 51–73.

    Google Scholar 

  41. Pimm, A.L., Jones, H.L., and Diamond, J., Am. Nat., 1988, vol. 132, pp. 757–785.

    Article  Google Scholar 

  42. Shaffer, M.L., BioScience, 1981, vol. 31, pp. 131–134.

    Article  Google Scholar 

  43. Tracy, C.R. and George, T.L., Am. Nat., 1992, vol. 139, pp. 102–122.

    Article  Google Scholar 

  44. Shaffer, M.L., BioScience, 1981, vol. 31, pp. 131–134.

    Article  Google Scholar 

  45. Gilpin, M.E. and Soule, M.E., Conservation Biology: The Science of Scarcity and Diversity, Keiter, R. B. and Boyce, M. S., Eds., Sunderland, MS: Sinauer Associates, 1986, pp. 19–34.

    Google Scholar 

  46. Cherry, J.L. and Wakeley, J., Genetics, 2003, vol. 163, pp. 421–428.

    CAS  Google Scholar 

  47. Lande, R., Am. Nat., 1993, vol. 142, pp. 911–927.

    Article  Google Scholar 

  48. MacArtur, R.H. and Connell, J.H., The Biology of Populations, New York: Wiley, 1966.

    Google Scholar 

  49. Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., FEBS Lett., 1997, vol. 416, pp. 15–18.

    Article  CAS  Google Scholar 

  50. Starkov, A.A. and Fiskum, G., J. Neurochem., 2003, vol. 86, pp. 1101–1107.

    Article  CAS  Google Scholar 

  51. Barja, G., Cadenas, S., Rojas, C., Perez-Campo, R., and Lopez-Torres, M., Free Rad. Res., 1994, vol. 21, pp. 317–328.

    Article  CAS  Google Scholar 

  52. Barja, G., Ann. NY Acad. Sci., 1998, vol. 854, pp. 224–238.

    Article  CAS  Google Scholar 

  53. Brunet-Rossinni, A.K., Mech. Ageing Dev., 2004, vol. 125, pp. 11–20.

    Article  CAS  Google Scholar 

  54. Skulachev, V.P., Aging Cell, 2004, vol. 3, pp. 17–19.

    Article  CAS  Google Scholar 

  55. Imai, H. and Nakagawa, Y., Free Rad. Biol. Med., 2003, vol. 34, pp. 145–169.

    Article  CAS  Google Scholar 

  56. Trubitsyn, A.G., Usp. Gerontol., 2006, vyp. 18, pp. 21–28.

    CAS  Google Scholar 

  57. Ryazanov, A.G. and Nefsky, B.S., Mach. Ageing Dev., 2002, vol. 123, pp. 207–213.

    Article  CAS  Google Scholar 

  58. Rattan, S.I.S., Exp. Gerontol., 1996, vol. 31, pp. 33–47.

    Article  CAS  Google Scholar 

  59. Trubitsyn, A.G., Usp. Gerontol., 2009, vol. 22, no. 2 (in press).

  60. Dil’man, V.M., Bol’shie biologicheskie chasy (vvedenie v integral’nuyu meditsinu) [Big Biological Clocks (Introduction into Integral Medicine)], Moscow: Znanie, 1982.

    Google Scholar 

  61. Hayflick, L. and Moorhead, P.S., Exp. Cell. Res., 1961, vol. 25, pp. 585–621.

    Article  Google Scholar 

  62. Baranov, V.S. and Baranova, E.V., Usp. Gerontol., 2007, vol. 20, no. 2, pp. 26–34.

    CAS  Google Scholar 

  63. Macfadyen, A., Animal Ecology, Aims and Methods, London: Pitman, 1963.

    Google Scholar 

  64. May, R.M., Ecology, 1973, vol. 54, pp. 315–325.

    Article  Google Scholar 

  65. Schley, D. and Gourley, S.A., J. Math. Biol., 2000, vol. 40, pp. 500–524.

    Article  CAS  Google Scholar 

  66. May, R.M., Theoretical Ecology. Principles and Applications, May, R. M., Ed., London: Blackwell, 1981, 2nd ed., pp. 5–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Trubitsyn.

Additional information

Original Russian Text © A.G. Trubitsyn, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 53, No. 3, pp. 95–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubitsyn, A.G. Aging as a result of the implementation of the phenoptosis program. Russ J Gen Chem 80, 1490–1500 (2010). https://doi.org/10.1134/S1070363210070455

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210070455

Keywords

Navigation