Skip to main content
Log in

Structural parameters of aqueous solutions of potassium fluoride under hydrothermal conditions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The structural parameters of aqueous KF solutions with concentrations of 10 and 20 wt % in the temperature range 473–623 K (p 18.7–24.6 MPa), obtained by the method of integral equations, are presented and compared with the structural parameters under standard conditions. Regularities of the structure formation of the systems under hydrothermal conditions, connected with ionic hydration and association, are elucidated. It is established that within the studied temperature range the number of contact associates in the solutions is stabilized, implying the possibility of formation of crystallization centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fluids in the Crust. Equilibrium and Transport Properties, Shmulovich, K.I., Yardley, B.W.D., and Gonchar, G.G., Eds., London: Chapman and Hall, 1995.

    Google Scholar 

  2. Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: Wiley, 1997, 3rd ed.

    Google Scholar 

  3. Gramenitskii, E.N., Kotel’nikov, A.R., Batanova, A.M., Shchekina, T.I., and Plechov, P.Yu., Eksperimental’naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology), Moscow: Nauchnyi Mir, 2000.

    Google Scholar 

  4. Bogdanov, Yu.A., Gidrotermal’nyi rudogenez okeanskogo dna (Hydrothermal Ore Genesis at the Ocean Floor), Moscow: Nauka, 2006.

    Google Scholar 

  5. Von Damm, K.L., Annual Rev. Earth and Planet Sci., 1990, vol. 18, p. 173.

    Article  Google Scholar 

  6. Mottl, M.J., Hydrothermal Processes at Seafloor Spreading Centers, New York: Plenum, 1983, p. 199.

    Google Scholar 

  7. Taran, Y.A., Hedenquist, J.W., Korzhinsky, M.A., Tkachenko, S.I., and Shmulovich, K.I., Geochim. Cosmochim. Acta, 1995, vol. 59, p. 1749.

    Article  CAS  Google Scholar 

  8. Ikornikova, N.Yu., Gidrotermal’nyi sintez kristallov v khloridnykh sistemakh (Hydrothermal Synthesis in Chloride Systems), Moscow: Nauka, 1975.

    Google Scholar 

  9. Popolitov, V.I. and Litvin, B.N., Vyrashchivanie monokristallov v gidrotermal’nykh usloviyakh (Growing Monocrystals under Hydrothermal Conditions), Moscow: Nauka, 1986.

    Google Scholar 

  10. Hydrothermal Growth of Crystals, Byrappa, K., Ed., Oxford: Pergamon, 1991.

    Google Scholar 

  11. Chemical Oceanography, 2nd ed., Riley, J.P. and Skirrow, G.,. London: Academic, 1975, vols. 3, 4.

    Google Scholar 

  12. Ivankin, P.F. and Nazarova, N.I., Glubinnaya flyuidizatsiya zemnoi kory i ee rol’ v petrogeneze, sole- i nefteobrazovanii (Depth Fluidization of the Earth’s Crust and Its Role in Petrogenesis and Salt and Oil Formation), Moscow: Central Scientific and Research Institute of Geological Survey, 2001.

    Google Scholar 

  13. Khadzhi, V.E., Tsinober, L.I., Shterenlikht, L.M., Samoilovich, M.I., Gordienko, L.A., Detchuev, Yu.A., Zadneprovskii, V.I., Kolodieva, S.V., Komarov, O.P., Laptev, V.A., Malova, D.G., Petrova, N.I., Romanov, L.N., and Sanzharlinskii, N.G., Sintez mineralov (Synthesis of Minerals), Moscow: Nedra, 1987, vol. 1.

    Google Scholar 

  14. Popolitov, V.I., Lobachev, A.N., and Ivanova, L.I., Kristallografiya, 1975, vol. 20, no. 4, p. 783.

    CAS  Google Scholar 

  15. Popolitov, V.I., Pis’ma Zh. Tekh. Fiz., 2001, vol. 27, no. 23, p. 53.

    Google Scholar 

  16. Saluja, P.P.S., Lemire, R.J., and Le Blanc, J.C., J. Chem. Thermodyn., 1992, vol. 24, p. 181.

    Article  CAS  Google Scholar 

  17. Ellis, A.J., J. Chem. Soc. A, 1968, no. 5, p. 1138.

  18. Majer, V., Obšil, M., Hefter, G., and Grolier, J.-P.E., J. Solution Chem., 1997, vol. 26, no. 9, p. 847.

    Article  CAS  Google Scholar 

  19. Guseynov, A.G., Iskanderov, A.I., Akhundov, R.T., Imanova, M.V., Tairov, A.D., and Akhundov, T.S., Dokl. Akad. Nauk Azerb. SSR. 1990, vol. 46, no. 3, p. 37.

    Google Scholar 

  20. Valyashko, V.M., Kravchuk, K.G., and Korotaev, M.Yu., Obzory po teplofizicheskim svoistvam veshchestv (Reviews on Thermophysical Properties of Compounds), Moscow: Inst. Vys. Temp. Akad. Nauk, 1984, vol. 59, no. 5, p. 57.

    Google Scholar 

  21. Valyashko, V.M., Problemy sovremennoi khimii koordinatsionnykh soedinenii (Problems of Modern Chemistry of Coordination Compounds), St. Petersburg: S.-Peterb. Gos. Univ., 1993, no. 11, p. 75.

    Google Scholar 

  22. Sotnikov, V.I., Soros Obrazovat. Zh., 1996, no. 12, p. 56.

  23. Chandler, D. and Andersen, H.C., J. Chem. Phys., 1972, vol. 57, no. 5, p. 1930.

    Article  CAS  Google Scholar 

  24. Monson, P.A. and Morris, G.P., Adv. Chem. Phys., 1990, vol. 77, p. 451.

    Article  CAS  Google Scholar 

  25. Holovko, M.F. and Kalyuzhnyi, Yu.V., Mol. Phys., 1989, vol. 68, no. 6, p. 1239.

    Article  Google Scholar 

  26. Labic, S., Malijevsky, A., and Vonka, P., Mol. Phys., 1985, vol. 56, no. 3, p. 709.

    Article  Google Scholar 

  27. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, J., Jerusalem Symp. on Quantum Chem. and Biochem., Pullman, P., Ed., Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  28. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1982, vol. 77, no. 3, p. 1451.

    Article  CAS  Google Scholar 

  29. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5836.

    Article  CAS  Google Scholar 

  30. Yamanaka, K., Yamaguchi, T., and Wakita, H., J. Chem. Phys., 1994, vol. 101, no. 11, p. 9830.

    Article  CAS  Google Scholar 

  31. Gorbaty, Yu.E. and Kalinichev, A.G., J. Phys. Chem., 1995, vol. 99, no. 15, p. 5336.

    Article  CAS  Google Scholar 

  32. Soper, A.K., Bruni, F., and Ricci, M.A., J. Chem. Phys., 1997, vol. 106, no. 1, p. 247.

    Article  CAS  Google Scholar 

  33. Reagan, M.T., Harris, J.G., and Tester, W.J., J. Phys. Chem., B, 1999, vol. 103, no. 37, p. 7935.

    Article  CAS  Google Scholar 

  34. Soper, A.K., Chem. Phys., 2000, vol. 258, no. 2/3, p. 121.

    Article  CAS  Google Scholar 

  35. Bondarenko, G.V., Gorbaty, Yu. E., Okhulkov, A.V., and Kalinichev, A.G., J. Phys. Chem. A, 2006, vol. 100, no. 11, p. 4042.

    Article  Google Scholar 

  36. Cui, S.T. and Harris, J.G., Chem. Eng. Sci., 1994, vol. 49, no. 17, p. 2749.

    Article  CAS  Google Scholar 

  37. Kalinichev, A.G. and Bass, J.D., J. Phys. Chem., 1997, vol. 101, no. 50, p. 9720.

    CAS  Google Scholar 

  38. Chialvo, A.A. and Cummings, P.T., Adv. Chem. Phys., 1999, vol. 109, p. 115.

    Article  CAS  Google Scholar 

  39. Balbuena, P.B., Johnston, K.P., and Rossky, P.J., J. Phys. Chem., 1996, vol. 100, no. 7, p. 2706.

    Article  CAS  Google Scholar 

  40. Kalinichev, A.G. and Churakov, S.V., Chem. Phys. Lett., 1999, vol. 302, p. 411.

    Article  CAS  Google Scholar 

  41. Chialvo, A.A., Yezdimer, E., Driesner, T., Cummings, P.T., and Simonson, J.M., Chem. Phys., 2000, vol. 258, no. 2/3, p. 109.

    Article  CAS  Google Scholar 

  42. Smirnov, P.R. and Trostin, V.N., Struktura vodnykh rast vorov neorganicheskikh elektrolitov v shirokom diapazone kontsentratsii i temperature (Structure of Aqueous Solutions of Inorganic Electrolytes in a Wide Range of Concentrations and Temperatures), Ivanovo: Ivanovo, 2003.

    Google Scholar 

  43. Fedotova, M.V. and Trostin, V.N., Zh. Neorg. Khim., 1995, vol. 40, no. 10, p. 1739.

    CAS  Google Scholar 

  44. Fedotova, M.V. and Trostin, V.N., Zh. Fiz. Khim., 1996, vol. 70, no. 6, p. 1040.

    CAS  Google Scholar 

  45. Soper, A.K. and Weckstrtsm, K., Biophys. Chem., 2006, vol. 124, p. 180.

    Article  CAS  Google Scholar 

  46. Fedotova, M.V., Doctoral (Chem.) Dissertation, Ivanovo, 2005.

  47. Buchner, R., Hefter, G., and Barthel, J., J. Chem. Soc., Faraday Trans., 1994, vol. 90, no. 17, p. 2475.

    Article  CAS  Google Scholar 

  48. Loginova, D.V., Lileev, A.S., and Lyashchenko, A.K., Zh. Fiz. Khim., 2006, vol. 80, no. 10, p. 1830.

    Google Scholar 

  49. Juskiewicz, A., Pol. J. Chem., 1984, vol. 58, nos. 10–12, p. 1115.

    Google Scholar 

  50. Bopp P., Okada I., Ohtaki H., and Heinzinger K., Z. Naturforsch. A, 1985, vol. 40, no. 2, p. 116.

    Google Scholar 

  51. Tanaka, K., Ogita, N., Tamura, Y., Okada, I., Ohtaki, H., Palinkas, G., Spohr, E., and Heinzinger, K., Z. Naturforsch. A, 1987, vol. 42, no. 1, p. 29.

    CAS  Google Scholar 

  52. Fedotova, M.V., Zh. Obshch, Khim., 2006, vol. 76, no. 12, p. 1987.

    Google Scholar 

  53. Valyashko, V.M., Fazovye ravnovesiya i svoistva gidrotermal’nykh system (Phase Equilibriua and Properties of Hydrothermal Systems), Moscow: Nauka, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Fedotova.

Additional information

Original Russian Text © M.V. Fedotova, E.L. Gavrilova, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 1, pp. 9–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, M.V., Gavrilova, E.L. Structural parameters of aqueous solutions of potassium fluoride under hydrothermal conditions. Russ J Gen Chem 79, 7–15 (2009). https://doi.org/10.1134/S1070363209010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363209010022

Keywords

Navigation