Skip to main content
Log in

Influence of the microstructure of semiconductor sensor materials on oxygen chemisorption on their surface

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The correlations between the microstructure and oxygen chemisorption on the surface of nanocrystalline SnO2 and In2O3 were established. The activation energy of oxygen chemisorption was estimated, and the chemisorbed species dominating in the temperature range 200–400°C (working temperature range of semiconductor gas sensors) was identified. An increase in the crystallite size tends to decrease the effective activation energy of oxygen chemisorption and to increase the surface coverage with chemisorbed oxygen and the contribution from atomic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seyama, T., Kato, A., Fujiishi, K., and Nagatani, N., Anal. Chem., 1962, vol. 34, p. 1502.

    Article  Google Scholar 

  2. US Patent 3 631 436.

  3. Yamazoe, N., Sens. Actuat. B, 2005, vol. 108, p. 2.

    Article  Google Scholar 

  4. Bârsan, N., Koziej, D., and Weimar, U., Sens. Actuat. B, 2007, vol. 121, p. 18.

    Article  Google Scholar 

  5. Bârsan, N., Schweizer-Berberich, M., and Göpel, W., Fresenius J. Anal. Chem., 1999, vol. 365, p. 287.

    Article  Google Scholar 

  6. Bârsan, N. and Weimar, U., J. Electroceram., 2001, vol. 7, p. 143.

    Article  Google Scholar 

  7. Sahm, T., Gurlo, A., Bârsan, N., and Weimar, U., Sens. Actuat. B, 2006, vol. 118, p. 78.

    Article  Google Scholar 

  8. Batzill, M. and Diebold, U., Prog. Surf. Sci., 2005, vol. 79, p. 47.

    Article  CAS  Google Scholar 

  9. Maier, J. and Göpel, W., J. Solid State Chem., 1988, vol. 72, p. 293.

    Article  CAS  Google Scholar 

  10. Gurlo, A., Chem. Phys. Chem., 2006, vol. 7, p. 2041.

    CAS  Google Scholar 

  11. Korotchenkov, G., Sens. Actuat. B, 2005, vol. 107, p. 209.

    Article  Google Scholar 

  12. Jarzebski, Z.M. and Marton, J.P., J. Electrochem. Soc., 1976, vol. 123, p. 299C.

    Article  CAS  Google Scholar 

  13. Mizokawa, Y. and Nakamura, S., Jpn. J. Appl. Phys., 1975, vol. 14, p. 779.

    Article  CAS  Google Scholar 

  14. Tournier, G. and Pijolat, C., Sens. Actuat. B, 1999, vol. 61, p. 43.

    Article  Google Scholar 

  15. Arnold, M.S., Avouris, P., Pan, Z.W., and Wang, Z.L., J. Phys. Chem. B, 2003, vol. 107, p. 659.

    Article  CAS  Google Scholar 

  16. Kalinin, S.V., Shin, J., Jesse, S., et al., J. Appl. Phys., 2005, vol. 98, p. 044503(1).

    Article  Google Scholar 

  17. Cox, D.F. and Hoflund, G.B., Surf. Sci., 1985, vol. 151, p. 202.

    Article  CAS  Google Scholar 

  18. Kofstad, P., Non-Stoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  19. Mizusaki, J., Koinuma, H., Shimoyama, J.I., Kawasaki, M., and Fueki, K., J. Solid State Chem., 1990, vol. 8, p. 443.

    Article  Google Scholar 

  20. Korotchenkov, G., Cerneavschi, A., Brinzari, V., Vasiliev, A., Ivanov, M., Cornet, A., Morante, J., Cabot, A., and Arbiol, J., Sens. Actuat. B, 2004, vol. 99, p. 297.

    Article  Google Scholar 

  21. Ivanovskaya, M.I., Bogdanov, P.A., Gurlo, A.Ch., and Ivashkevich, L.S., Neorg. Mater., 1998, vol. 34, p. 324.

    Google Scholar 

  22. Ivanovskaya, M., Bogdanov, P., Faglia, G., and Sberveglieri, G., Sens. Actuat. B, 2000, vol. 68, p. 344.

    Article  Google Scholar 

  23. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  24. Morrison, S.R., The Chemical Physics of Surface, New York: Plenum, 1977.

    Google Scholar 

  25. Zemel, J.N., Thin Solid Films, 1988, vol. 163, p. 189.

    Article  CAS  Google Scholar 

  26. Mizsei, J., Sens. Actuat. B, 1995, vol. 23, p. 173.

    Article  Google Scholar 

  27. Williams, D.E., Conduction and Gas Response of Semiconductor Gas Sensors in Solid State Gas Sensors, Mosely, P.T. and Tofield, B.C., Eds., Bristol: Alam Higer, 1987.

    Google Scholar 

  28. Bârsan, N., Sens. Actuat. B, 1994, vol. 17, p. 241.

    Article  Google Scholar 

  29. Kohl, D., Sens. Actuat., 1989, vol. 18, p. 71.

    Article  CAS  Google Scholar 

  30. Rumyantseva, M.N., Gaskov, A.M., Rosman, N., Pagnier, T., and Morante, J.R., Chem. Mater., 2005, vol. 17, p. 893.

    Article  CAS  Google Scholar 

  31. Vasiliev, R.B., Rumyantseva, M.N., Dorofeev, S.G., Potashnikova, Y.M., Ryabova, L.I., and Gaskov, A.M., Mendeleev Commun., 2004, vol. 14, p. 167.

    Article  Google Scholar 

  32. Rumyantseva, M.N., Ivanov, V.K., Shaporev, A.S., Rudyi, Yu.M., Yushchenko, V.V., Arbiol, J., and Gas’kov, A.M., Zh. Neorg. Khim., 2008, vol. 53 (in press).

  33. Gardner, J.W., Semicond. Sci. Technol., 1989, vol. 4, p. 345.

    Article  CAS  Google Scholar 

  34. Safonova, O.V., Rumyantseva, M.N., Labeau, M., and Gas’kov, A.M., J. Mater. Chem., 1998, vol. 8, p. 1577.

    Article  CAS  Google Scholar 

  35. Shewmon, P.G., Diffusion in Solids, New York: McGraw Hill, 1963.

    Google Scholar 

  36. Krasnov, K.S., VorobTev, N.K., and Godnev, I.N., Fizicheskaya Khimiya, Kniga 2: Elektrokhimiya. Khimicheskaya kinetika i kataliz (Physical Chemistry, book 2: Electrochemistry. Chemical Kinetics and Catalysis), Moscow: Vysschaya Shkola, 1995.

    Google Scholar 

  37. Pulkkinen, U., Rantala, T.T., Rantala, T.S., and Lantto, V., J. Mol. Catal. A, 2001, vol. 166, p. 15.

    Article  CAS  Google Scholar 

  38. Korotchenkov, G., Blinov, I., Brinzari, V., and Stetter, J.R., Sens. Actuat. B, 2007, vol. 122, p. 519.

    Article  Google Scholar 

  39. Brynzari, V., Korotchenkov, G., and Dmitriev, S., Sens. Actuat. B, 1999, vol. 61, p. 143.

    Article  Google Scholar 

  40. Kamp, B., Merkle, R., Lauck, R., and Maier, J., J. Solid State Chem., 2005, vol. 178, p. 3027.

    Article  CAS  Google Scholar 

  41. Korotchenkov, G., Brinzari, V., Golovanov, V., and Blinov, Y., Sens. Actuat. B, 2004, vol. 98, p. 41.

    Article  Google Scholar 

  42. Dieguez, A., Romano-Rodriguez, A., Morante, J.R., Kappler, J., and Bârsan, N., and Göpel, W., Sens. Actuat. B, 1999, vol. 60, p. 125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rumyantseva.

Additional information

Original Russian Text © M.N. Rumyantseva, E.A. Makeeva, A.M. Gas’kov, 2008, published in Rossiiskii Khimicheskii Zhurnal, 2008, Vol. 52, No. 2, pp. 122–129.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumyantseva, M.N., Makeeva, E.A. & Gas’kov, A.M. Influence of the microstructure of semiconductor sensor materials on oxygen chemisorption on their surface. Russ J Gen Chem 78, 2556–2565 (2008). https://doi.org/10.1134/S1070363208120359

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363208120359

Keywords

Navigation