Skip to main content
Log in

Nanomaterials and nanotechnologies in chemical and biochemical sensors: Capabilities and applications

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The publications reporting on the use of nanomaterials and nanotechnologies in chemical and biochemical sensor designing were reviewed for the recent decade. The capabilities and applications were discussed for nanoparticles based on gold, silver, magnetic and semiconductor materials (quantum dots), lanthanides, and silica compounds, as well as for nanotubes and nanolayers (Langmuir-Blodgett films, selfassembled monolayers) used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors. It was shown that the unique capabilities of nanosensors might hold the key to improve the analysis of liquids, gases, and especially biochemical and biological objects in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanotechnology Research Directions, Vision for Nanotechnology in the Next Decade, Roco, M.C., Williams, R.S., and Alivasatos, P., Eds., Cluver Academic, 2000.

  2. Pitkethly, M.J. Nanotoday, 2004, December, p. 20.

  3. Kobayashi, N., Vvedenie v nanotekhnologiyu (Introduction to Nanotechnology), Moscow: BINOM. Laboratoriya Znanii, 2005.

    Google Scholar 

  4. Gusev, A.I., Nanomaterialy, nanostruktury, nanotechnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: Fizmatlit, 2005.

    Google Scholar 

  5. Riu, J., Maroto, A., and Rius, F.X., Talanta, 2006, vol. 69, p. 288.

    CAS  Google Scholar 

  6. Shi, J., Zhu, Y., Zhang, X., Baeyens, W.R.G., and Garcia-Campana, A.M., Trends Anal. Chem., 2004, vol. 23, no. 5, p. 351.

    CAS  Google Scholar 

  7. Costa-Fernandez, J.M., Pereiro, R., and Sanz-Medel, A., Trends Anal. Chem., 2006, vol. 25, no. 3, p. 207.

    CAS  Google Scholar 

  8. Huang, X.-J. and Choi, Y.-K., Sens. Actuat. B, 2007, vol. 122, p. 659.

    Google Scholar 

  9. He, L. and Toh, C.-S., Anal. Chim. Acta, 2006, vol. 556, p. 1.

    CAS  Google Scholar 

  10. Jeronimo, P.C.A., Araujo, A.N., and Montenegro, M.C.B.S.M., Talanta, 2007, vol. 72, p. 13.

    CAS  Google Scholar 

  11. Tansil, N.C. and Gao, Z., Nanotoday, 2006, vol.1, no. 1, p. 28.

    Google Scholar 

  12. Vaseashta, A. and Dimova-Malinovska, D., Sci. Technol. Adv. Mater., 2006, vol. 6, p. 312.

    Google Scholar 

  13. Davis, F. and Higson, S.P.J., Biosens. Bioelectron., 2005, vol. 21, p. 1.

    CAS  Google Scholar 

  14. James, S.W. and Tatam, R.P., J. Opt. A: Pure Appl. Opt., 2006, vol. 8, p. 430.

    Google Scholar 

  15. Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A., Nanotoday, 2007, vol. 2, no. 1, p. 18.

    Google Scholar 

  16. Yan, J., Esteves, C.M., Smith, J.E., Wang, K., He, X., Wang, L., and Tan, W., Nanotoday, 2007, vol. 2, no. 3, p. 44.

    Google Scholar 

  17. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature, 1996, vol. 382, p. 607.

    CAS  Google Scholar 

  18. Haes, A.J. and Van Duyne, R.P., J. Amer. Chem. Soc., 2002, vol. 124, p. 10596.

    CAS  Google Scholar 

  19. McFarland, A.D. and Van Duyne, R.P., Nano Lett., 2003, vol. 3, p. 1057.

    CAS  Google Scholar 

  20. Raschke, G., Kowarik, S., Franzl, T., Sonnichsen, C., Klar, T.A., and Feldmann, J., Nano Lett., 2003, vol. 3, p. 935.

    CAS  Google Scholar 

  21. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., and Feld, M.S., Chem. Rev., 1999, vol. 99, p. 2957.

    CAS  Google Scholar 

  22. Fritzsche, W. and Taton, T.A., Nanotechnology, 2003, vol. 14, p. R63.

    CAS  Google Scholar 

  23. Liu, J. and Lu, Y., J. Amer. Chem. Soc., 2005, vol. 126, p. 12298.

    Google Scholar 

  24. Kerman, K., Anal. Chem., 2004, vol. 76, p. 1877.

    CAS  Google Scholar 

  25. Chan, W.C.W and Nie, S.M., Science, 1998, vol. 281, p. 2016.

    CAS  Google Scholar 

  26. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science, 1998, vol. 281, p. 2013.

    CAS  Google Scholar 

  27. Smith, A.M. and Nie, S., Analyst, 2004, vol. 129, p. 672.

    CAS  Google Scholar 

  28. Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., and Nie, S., Curr. Opin. Biotechnol., 2002, vol. 13, p. 40.

    CAS  Google Scholar 

  29. Riegler, J. and Nann, T., Anal. Bioanal. Chem., 2004, vol. 379, p. 913.

    CAS  Google Scholar 

  30. Alivisatos, P., Nat. Biotechnol., 2004, vol. 22, p. 47.

    CAS  Google Scholar 

  31. Wang, L.-Y., Kan, X.-W., Zhang, M.-C., Zhu, C.-Q., and Wang, L., Analyst, 2002, vol. 127, p. 1531.

    CAS  Google Scholar 

  32. Goldman, E.R., Medintz, I.L., Whitley, J.L., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 6744.

    CAS  Google Scholar 

  33. Goldman, E.R., Clapp, A.R., Anderson, G.P., Yueda, H.T., Mauro, J.M., Medintz, I.L., and Mattoussi, H., Anal. Chem., 2004, vol. 76, p. 684.

    CAS  Google Scholar 

  34. Willard, D.M. and Van Orden, A., Nat. Mater., 2003, vol. 2, p. 575.

    CAS  Google Scholar 

  35. Buck, S.M., Xu, H., Brasuel, M., Philbert, M.A., and Kopelman, R., Talanta, 2004, vol. 63, p. 41.

    CAS  Google Scholar 

  36. Wang, J., Liu, G.D., and Polsky, R., Electrochem. Commun., 2002, vol. 4, p. 722.

    CAS  Google Scholar 

  37. Zhu, N.N., Zhang, A.P., He, P.G., and Fang, Y.Z., Electroanalysis, 2004, vol. 16, p. 1925.

    CAS  Google Scholar 

  38. Liu, G.-D., Anal. Chem., 2004, vol. 76, p. 7125.

    Google Scholar 

  39. Lian, W., Litherland, S., Badrane, H., Tan, W., Wu, D., Baker, H.V., Gulig, P., Lim, D., and Jin, S., Anal. Biochem., 2004, vol. 3, no. 34, p. 135.

    Google Scholar 

  40. Yang, W., Zhang, C.G., Qu, H.Y., Yang, H.H., and Xu, J.G., Anal. Chim. Acta, 2004, vol. 503, p. 163.

    CAS  Google Scholar 

  41. Merkoci, A., Microchim. Acta, 2006, vol. 152, p. 157.

    CAS  Google Scholar 

  42. Wildgoose, G.G., Banks, C.E., Levebtis, H.C., and Compton, R.G., Microchim. Acta, 2006, vol. 152, p. 187.

    CAS  Google Scholar 

  43. Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., and Dekker, C., Nature, 1997, vol. 386, p. 474.

    CAS  Google Scholar 

  44. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H., Science, 2000, vol. 287, p. 622.

    CAS  Google Scholar 

  45. Collins, P.G., Bradley, K., Ishigami, M., and Zettl, A., Science, 2000, vol. 287, p. 1801.

    CAS  Google Scholar 

  46. Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., and Grimes, C.A., Sens. Actuat. B, 2001, vol. 81, p. 32.

    Google Scholar 

  47. Zahab, A., Spina, L., Poncharal, P., and Marliere, C., Phys. Rev. B, 2000, vol. 62, p. 10000.

    CAS  Google Scholar 

  48. Qi, P., Vermesh, O., Grecu, M., Javea, A., Wang, Q., Dai, H., Pei, S., and Cho, K.J., Nano Lett., 2003, vol. 3, p. 347.

    CAS  Google Scholar 

  49. Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., et al., Proc. Natl. Acad. Sci., 2003, vol. 100, p. 4984.

    CAS  Google Scholar 

  50. Manso, J., Mena, M.L., Yanez-Sedeno, P., and Pingarron, J., J. Electroanal. Chem., 2007, vol. 603, p. 1.

    CAS  Google Scholar 

  51. Davis, J.J., Coleman, K.S., Azamian, B.R., Bagshaw, C.B., and Green, M.L.H., Chem. Eur. J., 2003, vol. 9, p. 3732.

    CAS  Google Scholar 

  52. Azamian, B.R., Davis, J.J., Coleman, K.S., Bagshaw, C., and Green, M.L.H., J. Am. Chem. Soc., 2002, vol. 124, p. 12664.

    CAS  Google Scholar 

  53. Tkac, J., Whittaker, J.W., and Ruzgas, T., Biosens. Bioelectron., 2007, vol. 22, p. 1820.

    CAS  Google Scholar 

  54. Zare, H.R. and Nasirizadeh, N., Electrochim. Acta, 2007, vol. 52, p. 4153.

    CAS  Google Scholar 

  55. Luque, G.L., Ferreyra, N.F., and Rivas, G.A., Talanta, 2007, vol. 71, p. 1282.

    CAS  Google Scholar 

  56. Lin, X.-Q., He, J.-B., and Zha, Zh.-G., Sens. Actuat. B, 2006, vol. 119, p. 608.

    Google Scholar 

  57. Yan, X.B., Chen, X.J., Tay, B.K., and Khor, K.A., Electrochem. Commun., 2007, vol. 9, p. 1269.

    CAS  Google Scholar 

  58. Wei, B.Y., Lin, C.S., and Lin, H.M., Sens. Mater., 2003, vol. 15, p. 177.

    CAS  Google Scholar 

  59. Guo, Sh. and Wang, E., Electrochem. Commun., 2007, vol. 9, p. 1252.

    CAS  Google Scholar 

  60. Padigi, S.K., Reddy, R.K.K., and Prasad, Sh., Biosens. Bioelectron., 2007, vol. 22, p. 829.

    CAS  Google Scholar 

  61. Sumanasekera, G.U., Pradhan, B.K., Adu, C.K.W., et al., Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 2002, vol. 387, p. 31.

    CAS  Google Scholar 

  62. Modi, A., Koratkar, N., Lass, E., Wei, B., and Ajayan, P.M., Nature, 2003, vol. 424, p. 171.

    CAS  Google Scholar 

  63. Penza, M., Antolini, F., and Antisari, M.V., Sens. Actuat. B, 2004, vol. 100, p. 47.

    Google Scholar 

  64. Newman, J.D., Tigwell, L.J., Turner, A.P.F., and Warner, P.J., in Biosensors 2004: Proc. Eighth World Congr. Biosensors, Elsevier, 2004.

  65. Okahata, Y., Tsuruta, T., Ijiro, K., and Ariga, K., Langmuir, 1988, vol. 4, p. 1373.

    CAS  Google Scholar 

  66. McRipley, M.A. and Linsenmeier, R.A., J. Electroanal. Chem., 1996, vol. 414, p. 235.

    Google Scholar 

  67. Hou, S.F., Fang, H.Q., and Chem, H.Y., Anal. Lett., 1997, vol. 30, p. 1631.

    CAS  Google Scholar 

  68. Kang, X., Mai, Zh., Zou, X., Cai, P., and Mo, J., Anal. Biochem., 2007, vol. 363, p.143.

    CAS  Google Scholar 

  69. Shan, D., Zhu, M., Xue, H., and Cosnier, S., Biosen. Bioelectron., 2007, vol. 22, p. 1612.

    CAS  Google Scholar 

  70. Zeng, Y.-L., Huang, Y.-F., Jiang, J.-H., Zhang, X.-B., Tang, Ch.-R., Shen, G.-L., and Yu, R.-Q., Electrochem. Commun., 2007, vol. 9, p. 185.

    Google Scholar 

  71. Xian, Y., Hu, Y., Liu, F., Xian, Y., Wang, H, and Jin, L., Biosens. Bioelectron., 2006, vol. 21, p. 1996.

    CAS  Google Scholar 

  72. Huang, X-J. and Choi, Y-K., Sens. Actuat. B, 2007, vol. 122, p. 659.

    Google Scholar 

  73. Varghese, O.K., Gong, D.W., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A., Adv. Mater., 2003, vol. 15, p. 624.

    CAS  Google Scholar 

  74. Yuan, J.H., Wang, K., and Xia, X.H., Adv. Funct. Mater., 2005, vol. 15, p. 803.

    CAS  Google Scholar 

  75. Zheng, H., Yan, Zh., Dong, H., and Ye, B., Sens. Actuat. B, 2007, vol. 120, p. 603.

    Google Scholar 

  76. Penza, M., Tagliente, M.A., Aversa, P., Cassano, G., and Capodieci, L., Mater. Sci. Eng. C, 2006, vol. 26, p. 1165.

    CAS  Google Scholar 

  77. Kalinina, M.A., Golubev, N.V., Raitman, O.A., Selector, S.L., and Arslanov, V.V., Sens. Actuat. B, 2006, vol. 114, p. 19.

    Google Scholar 

  78. Godoy, S., Leca-Bouvier, B., Boullanger, P., Blum, L.J., and Girard-Egrot, A.P., Sens. Actuat. B, 2005, vol. 107, p. 82.

    Google Scholar 

  79. Malhotra, B.D., Singhal, R., Chaubey, A., Sharma, S.K., and Kumar, A., Curr. Appl. Phys., 2005, vol. 5, p. 92.

    Google Scholar 

  80. Olsen, E.V., Pathirana, S.T., Samoylov, A.M., et al., J. Microbiol. Meth., 2003, vol. 53, p. 273.

    CAS  Google Scholar 

  81. Xie, D., Jiang, Y., Pan, W., and Li, Y., Thin Solid Films, 2003, vol. 424, p. 247.

    CAS  Google Scholar 

  82. Ferreira, M., Constantino, C.J.L., Riul, A., Jr., et al., Polymer, 2003, vol. 44, p. 4205.

    CAS  Google Scholar 

  83. Shtykov, S.N., Rusanova, T.Yu., Kalach, A.V., and Pankin, K.E., Sens. Actuat. B, 2006, vol. 114, p. 497.

    Google Scholar 

  84. Valli, L., Adv. Colloid Interface Sci., 2005, vol. 116, p. 13.

    CAS  Google Scholar 

  85. Kalinina, M.A., Arslanov, V.V., and Vatsadze, S.Z., Kolloidn. Zh., 2003, vol. 65, p. 201.

    Google Scholar 

  86. Shtykov, S.N., Kalach, A.V., Pankin, K.E., Rusanova, T.Yu., and Selemenev, V.F., Zh. Anal. Khim., 2007, vol. 62, no. 5, p. 544.

    Google Scholar 

  87. Howarth, V.A., Cui, D.F., Petty, M.C., Ancelin, H., and Yarwood, J., Thin Solid Films, 1989, vol. 180, p. 111.

    CAS  Google Scholar 

  88. Kato, D., Kunitake, M., Nishizawa, M., Matsue, T., and Mizutani, F., Electrochim. Acta, 2005, vol. 51, p. 938.

    CAS  Google Scholar 

  89. Casilli, S., De Luca, M., Apetrei, C., et al., Appl. Surf. Sci., 2005, vol. 246, p. 304.

    CAS  Google Scholar 

  90. Wohnrath, K., Pessoa, C.A., Dos Santos, P.M., Garcia, J.R., Batista, A.A., and Oliveira, O.N., Jr., Progr. Solid State Chem., 2005, vol. 33, p. 243.

    CAS  Google Scholar 

  91. Ince, R. and Narayanaswamy, R., Anal. Chim. Acta, 2006, vol. 569, p. 1.

    CAS  Google Scholar 

  92. Richardson, T.H., Brook, R.A., Davis, F., and Hunter, C.A., Colloids Surf. A: Physicochem. Eng. Asp., 2006, vols. 284–285, p. 320.

    Google Scholar 

  93. Bariain, C., Matıas, I.R., Fernandez-Valdivielso, C., Arregui, F.J., et al., Sens. Actuat. B, 2003, vol. 93, p. 153.

    Google Scholar 

  94. Shtykov, S.N. and Rysanova, T.Yu., Dokl. Ross. Akad. Nauk, 2003, vol. 388, no. 5, p. 643.

    Google Scholar 

  95. Shtykov, S.N., Rusanova, T.Yu., Smirnova, T.D., and Gorin, D.A., Zh. Anal. Khim., 2004, vol. 59, no. 2, p. 198.

    Google Scholar 

  96. Sastry, M., Ramakrishnan, V., Pattarkine, M., Gole, A., and Ganesh, K.N., Langmuir, 2000, vol. 16, p. 9142.

    CAS  Google Scholar 

  97. Xiao, C., Yang, M., and Sui, S., Thin Solid Films, 1998, vol. 327, p. 647.

    Google Scholar 

  98. Anzai, J., Hashimoto, J., Osa, T., and Matsuo, T., Anal. Sci., 1988, vol. 4, p. 247.

    CAS  Google Scholar 

  99. Sriyudthsak, M., Yamagishi, H., and Morizumi, T., Thin Solid Films, 1988, vol. 160, p. 463.

    CAS  Google Scholar 

  100. Eremenko, A., Kurochkin, I., Chernov, S., Barmin, A., Yaroslavov, A., and Moskvitina, T., Thin Solid Films, 1995, vol. 260, p. 212–216.

    CAS  Google Scholar 

  101. Ramanathan, K., Ram, M.K., Malholtra, B.D., Surya, A., and Murthy, N., Mater. Sci. Eng. C, 1995, vol. 3, p. 159.

    Google Scholar 

  102. Nicolini, C., Adami, M., Dubrovsky, T., et al., Sens. Actuat. B, 1995, vol. 24, p. 121.

    Google Scholar 

  103. Choi, J.W., Parl, J.H., Lee, W.C., Oh, B.K., Min, J.H., and Lee, W.H., J. Microbiol. Biotechnol., 2001, vol. 11, p. 979.

    CAS  Google Scholar 

  104. Bigelow, W.C., Pickett, D.L., and Zisman, W.A., J. Colloid. Sci., 1946, vol. 1, p. 513.

    CAS  Google Scholar 

  105. Shafrin, E.G. and Zisman, W.A., I., J. Colloid. Sci., 1949, vol. 4, p. 571.

    CAS  Google Scholar 

  106. Sagiv, J., J. Amer. Chem. Soc., 1980, vol. 102, p. 92.

    CAS  Google Scholar 

  107. Tombelli, S., Minunni, M., Santucci, A., Spiriti, M.M., and Mascini, M., Talanta, 2006, vol. 68, p. 806.

    CAS  Google Scholar 

  108. Su, X., Chew, F.T., and Li, S.F.G., Anal. Biochem., 1999, vol. 273, p. 66.

    CAS  Google Scholar 

  109. Guo, C., Boullanger, P., Jiang, L., and Liu, T., Biosens. Bioelectron., 2007, vol. 22, p. 1830.

    CAS  Google Scholar 

  110. Decher, G., Hong, J.D., and Schmitt, J., Thin Solid Films, 1992, vol. 210, p. 831.

    Google Scholar 

  111. Yashchenok, A.M., Gorin D.A., Pankin, K.E., et al., Fiz. Tekh. Poluprovodn., 2007, vol. 41, no. 6, p. 706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Shtykov.

Additional information

Original Russian Text © S.N. Shtykov, T.Yu. Rusanova, 2008, published in Rossiiskii Khimicheskii Zhurnal, 2008, vol. 52, No. 2, pp. 92–100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shtykov, S.N., Rusanova, T.Y. Nanomaterials and nanotechnologies in chemical and biochemical sensors: Capabilities and applications. Russ J Gen Chem 78, 2521–2531 (2008). https://doi.org/10.1134/S1070363208120323

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363208120323

Keywords

Navigation