Skip to main content
Log in

IR spectra of water clusters with captured ethane molecules: Computer simulation

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Uptake of ethane molecules by a monodisperse aqueous system was simulated by molecular dynamics. The cluster (H2O)20 characterizing the system remains stable until the number of the captured C2H6 molecules becomes larger than four. Addition of ethane molecules to the disperse aqueous system decreases both the real and imaginary parts of the dielectric permittivity in the frequency range 0 ≤ ω ≤ 1000 cm−1. The integral IR absorption coefficient of the disperse system containing C2H6 molecules increases, and the frequency-average reflection coefficient decreases. The continuous reflection spectra transform into band spectra. The heat-radiating power of the clusters decreases upon absorption of ethane molecules. The cluster that took up two ethane molecules exhibits the highest radiating power. This cluster has the largest number of active electrons interacting with the arriving wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deshmukh, M.M., Sastry, N.V., and Gadre, S.R., J. Chem. Phys., 2004, vol. 121, no. 24, p. 12402.

    Article  CAS  Google Scholar 

  2. Xu, H., Stern, H.A., and Berne, B.J., J. Phys. Chem. B, 2002, vol. 106, no. 8, p. 2054.

    Article  CAS  Google Scholar 

  3. Suzuki, S., Green, P.G., Bumgarner, R.E., Dasgupta, S., Goddard, W.A., and Blake, G.A., Science, 1992, vol. 257, no. 14, p. 942.

    Article  CAS  Google Scholar 

  4. Gruenloh, C.J., Carney, J.R., Hagemeister, F.C., and Zwier, T.S., J. Chem. Phys., 2000, vol. 113, no. 6, p. 2290.

    Article  CAS  Google Scholar 

  5. Stern, H.A. and Berne, B.J., J. Chem. Phys., 2001, vol. 115, no. 16, p. 7622.

    Article  CAS  Google Scholar 

  6. Galashev, A.E., Chukanov, V.N., Novruzov, A.N., and Novruzova, O.A., Teplofiz. Vys. Temp., 2006, vol. 44, no. 3, p. 370.

    Google Scholar 

  7. Galashev, A.E., Novruzov, A.N., and Galasheva, O.A., Khim. Fiz., 2006, vol. 25, no. 2, p. 26.

    CAS  Google Scholar 

  8. Galashev, A.E., Chukanov, V.N., Novruzov, A.N., and Novruzova, O.A., Elektrokhimiya, 2007, vol. 43, no. 2, p. 143.

    Google Scholar 

  9. Galashev, A.Y., Rakhmanova, O.R., Galasheva, O.A., and Novruzov, A.N., Phase Transitions, 2006, vol. 79, no. 11, p. 911.

    Article  CAS  Google Scholar 

  10. Brodskaya, E.N., Kolloid. Zh., 2001, vol. 63, no. 1, p. 10.

    CAS  Google Scholar 

  11. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, no. 19, p. 8149.

    Article  CAS  Google Scholar 

  12. Jorgensen, W.L. and Madura, J.D., J. Am. Chem. Soc., 1983, vol. 105, no. 6, p. 1407.

    Article  CAS  Google Scholar 

  13. Benedict, W.S., Gailar, N., and Plyler, E.K., J. Chem. Phys., 1956, vol. 24, no. 6, p. 1139.

    Article  CAS  Google Scholar 

  14. Xantheas, S., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8821.

    Article  CAS  Google Scholar 

  15. Feller, D. and Dixon, D.A., J. Phys. Chem., 1996, vol. 100, no. 8, p. 2993.

    Article  Google Scholar 

  16. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100, no. 5, p. 3757.

    Article  CAS  Google Scholar 

  17. Ahlstrom, P., Wallqvist, A., Engstrom, S., and Jonsson, B., Mol. Phys., 1989, vol. 68, p. 563.

    Article  Google Scholar 

  18. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, no. 11, p. 6579.

    Article  CAS  Google Scholar 

  19. Spravochnik khimika (Chemist’s Handbook), Nikol’-skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1.

    Google Scholar 

  20. Morse, J.K., Physics, 1928, vol. 14, no. 1, p. 37.

    CAS  Google Scholar 

  21. Haile, J.M., Molecular Dynamics Simulation. Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  22. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in Solid State Dynamics and Applied Gyroscope Theory), Moscow: Nauka, 1985.

    Google Scholar 

  23. Sonnenschein, R., J. Comp. Phys., 1985, vol. 59, no. 3, p. 347.

    Article  CAS  Google Scholar 

  24. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982, vol. 8.

    Google Scholar 

  25. Fizicheskaya entsiklopediya (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sov. Entsiklopediya, 1988, vol. 1, p. 702.

    Google Scholar 

  26. CRC Handbook of Physics and Chemistry, Lide, D.R., Ed., London: CRC, 1992, 73rd ed.

    Google Scholar 

  27. Bartell, L.S., J. Phys. Chem. B, 1997, vol. 101, no. 38, p. 7573.

    Article  CAS  Google Scholar 

  28. Bresme, F., J. Chem. Phys., 2001, vol. 115, no. 16, p. 7564.

    Article  CAS  Google Scholar 

  29. Neumann, M., J. Chem. Phys., 1985, vol. 82, no. 12, p. 5663.

    Article  CAS  Google Scholar 

  30. Shevkunov, S.V., Kolloidn. Zh., 2002, vol. 64, no. 2, p. 262.

    Google Scholar 

  31. Hermans, J., Pathiaseril, A., and Anderson, A., J. Am. Chem. Soc., 1988, vol. 110, p. 5982.

    Article  CAS  Google Scholar 

  32. Neumann, M., J. Chem. Phys., 1986, vol. 85, no. 3, p. 1567.

    Article  CAS  Google Scholar 

  33. Angell, C.A. and Rodgers, V., J. Chem. Phys., 1984, vol. 80, no. 12, p. 6245.

    Article  CAS  Google Scholar 

  34. Goggin, P.L. and Carr, C., Far Infrared Spectroscopy and Aqueous Solutions. Water and Aqueous Solutions, Bristol: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  35. Kozintsev, V.I., Belov, M.L., Gorodnichev, V.A., and Fedotov, Yu.V., Lazernyi optiko-akusticheskii analiz mnogokomponentnykh gazovykh smesei (Laser Optical-Acoustic Analysis of Multicomponent Gas Mixtures), Moscow: Mosk. Gos. Tekh. Univ., 2003.

    Google Scholar 

  36. Kudin, K.N. and Scuseria, G.E., J. Chem. Phys., 1999, vol. 111, no. 6, p. 2351.

    Article  CAS  Google Scholar 

  37. Schutz, M., Hetzer, G., Werner, H.J., J. Chem. Phys., 1999, vol. 111, no. 13, p. 5691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, A.N. Novruzov, 2008, published in Zhurnal Obshchei Khimii, 2008, Vol. 78, No. 1, pp. 29–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Novruzov, A.N. IR spectra of water clusters with captured ethane molecules: Computer simulation. Russ J Gen Chem 78, 26–34 (2008). https://doi.org/10.1134/S1070363208010052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363208010052

Keywords

Navigation