Skip to main content
Log in

Effect of electrolyte additions and temperature on the structure self-organization of the water subsystem in water-supercritical Co2-NaCl ternary mixtures

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of electrolyte additions (6, 15, 23 wt % NaCl) and temperature (T 313–633 K, p 250 bar) on the structural state of the water subsystem in the water-rich phase of the water-supercritical CO2-NaCl ternary system was studied by IR spectroscopy and the method of integral equations. With increasing salt concentration, the breaking effect of temperature on the structure of the water subsystem becomes weaker, and the fractions of H-bonded water n-mers are redistributed. In systems with a nonzero NaCl concentration, tetramers exist throughout the examined temperature range, and trimers become the main structural unit of the water subsystem at temperatures close to the critical point. The prevalent structural components of the system with 0 wt % NaCl near the critical point are dimers. The O⋯H bonds between water molecules and Cl⋯H bonds in the nearest surroundings of the anions make approximately equal contributions to the overall pattern of H bonds in the water subsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gramenitskii, E.N., Kotel’nikov, A.R., Batanova, A.M., Shchekina, T.I., and Pchelov, P., Eksperimental’naya i tekhnicheskaya petrologiya (Experimental and Technical Petrology), Moscow: Nauchnyi Mir, 2000.

    Google Scholar 

  2. Schmidt, C., PhD Thesis, Blacksburg: Virginia, 1997.

  3. Oparin, R.D., Tassaing, T., Besnard, M., and Danten, Y., Abstracts of Papers, II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Sverkhkriticheskie flyuidnye tekhnologii: innovatsionnyi potentsial Rossii” (II Int. Scientific and Practical Conf. “Supercritical Fluid Technologies: Innovation Potential of Russia”), Rostov-on-Don, 2005, p. 75.

  4. Franck, E. and Roth, K., Faraday Disc. Chem. Soc., 1967, vol. 43, no. 1, p. 108.

    Google Scholar 

  5. Chandler, D. and Andersen, H.C., J. Chem. Phys., 1972, vol. 57, no. 5, p. 1930.

    Article  CAS  Google Scholar 

  6. Monson, P.A. and Morris, G.P., Adv. Chem. Phys., 1990, vol. 77.

  7. Holovko, M.F. and Kalyuzhnyi, Y.V., Mol. Phys., 1989, vol. 68, no. 6, p. 1239.

    Article  Google Scholar 

  8. Gillan, M.J., Mol. Phys., 1979, vol. 38, no. 9, p. 1781.

    Article  CAS  Google Scholar 

  9. Labic, S., Malijevsky, A., and Vonka, P., Mol. Phys., 1985, vol. 56, no. 3, p. 709.

    Article  Google Scholar 

  10. Berendsen, H.J.C., Postma, J.P.M., Gunsteren, W.F.V., and Hermans, J., Abstracts of Papers, Jerusalem Symp. on Quantum Chemistry and Biochemistry, Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  11. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1982, vol. 77, no. 3, p. 1451.

    Article  CAS  Google Scholar 

  12. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5836.

    Article  CAS  Google Scholar 

  13. Kjaergaard, H.G., Henry, B.R., Wei, H., Lefebvre, S., Carrington, T., Mortensen, O.S., and Sage, M.L., J. Chem. Phys., 1994, vol. 100, no. 9, p. 6228.

    Article  CAS  Google Scholar 

  14. Todheide, K. and Franck, E.U., Z. Phys. Chem., Neue Folge, 1963, vol. 37, no. 2, p. 387.

    Google Scholar 

  15. Majer, V., Gates, J.A., Inglese, A., and Wood, R.H., J. Chem. Thermodyn., 1988, vol. 20, no. 8, p. 949.

    Article  CAS  Google Scholar 

  16. Millero, F.J., Chem. Rev., 1971, vol. 71, no. 2, p. 147.

    Article  CAS  Google Scholar 

  17. Marshall, W.L., J. Solution Chem., 1993, vol. 22, no. 6, p. 539.

    Article  CAS  Google Scholar 

  18. Ohya, T., Jin, Y., Furutaka, S., and Ikawa, S.-I., Abstracts of Papers, 14th Int. Conf. on the Properties of Water and Steam, Kyoto (Japan), 2004, p. 194.

  19. Oparin, R., Tassaing, T., Danten, Y., and Besnard, M., J. Chem. Phys., 2005, vol. 122, no. 9, p. 094505.

    Article  CAS  Google Scholar 

  20. Gehrig, M., Lentz, H., and Franck, E.U., Ber. Bunsenges. Phys. Chem., 1986, vol. 90, no. 2, p. 525.

    CAS  Google Scholar 

  21. Oparin, R.D. and Fedotova, M.V., Abstracts of Papers, III Mezhdunarodnaya nauchno-prakticheskaya konferentsiya “Sverkhkriticheskie flyuidnye tekhnologii: innovatsionnyi potentsial Rossii” (III Int. Scientific and Practical Conf. “Supercritical Fluid Technologies: Innovation Potential of Russia”), Rostov-on-Don, 2006, p. 86.

  22. Low, G.R. and Kjaergaard, H.G., J. Chem. Phys., 1999, vol. 110, no. 18, p. 9104.

    Article  CAS  Google Scholar 

  23. Jin, Y. and Ikawa, S.-I., J. Chem. Phys., 2003, vol. 119, no. 23, p. 12432.

    Article  CAS  Google Scholar 

  24. Wagner, W. and Pruss, A., J. Phys. Chem. Ref. Data, 2002, vol. 31, no. 2, p. 387.

    Article  CAS  Google Scholar 

  25. Takenouchi, S. and Kennedy, G.C., Am. J. Sci., 1965, vol. 263, no. 5, p. 445.

    Article  CAS  Google Scholar 

  26. Frantz, J.D., Popp, R.K., and Hoering, T.C., Chem. Geol., 1992, vol. 98, nos. 3–4, p. 237.

    Article  CAS  Google Scholar 

  27. Joyce, B. and Holloway, J.R., Geochim. Cosmochim. Acta, 1993, vol. 57, no. 4, p. 733.

    Article  CAS  Google Scholar 

  28. Malinin, S.D. and Savelyeva, N.I., Geochem. Int., 1972, vol. 9, no. 4, p. 410.

    Google Scholar 

  29. Malinin, S.D. and Kurovskaya, N.A., Geochem. Int., 1975, vol. 12, no. 2, p. 199.

    Google Scholar 

  30. Yasunishi, A. and Yoshida, F., J. Chem. Eng. Data, 1979, vol. 24, no. 1, p. 11.

    Article  CAS  Google Scholar 

  31. Duan, Z., Moller, N., and Weare, J.H., Geochim. Cosmochim. Acta, 1995, vol. 59, no. 14, p. 2869.

    Article  CAS  Google Scholar 

  32. Duan, Z. and Sun, R., Chem. Geol., 2003, vol. 193, nos. 3–4, p. 257.

    Article  CAS  Google Scholar 

  33. Daridon, J.L., Lagourette, B., Saint-Guirons, H., and Xans, P., Fluid Phase Equil., 1993, vol. 91, no. 1, p. 31.

    Article  CAS  Google Scholar 

  34. Oparin, R., Tassaing, T., Danten, Y., and Besnard, M., J. Chem. Phys., 2004, vol. 120, no. 22, p. 10691.

    Article  CAS  Google Scholar 

  35. Engdahl, A. and Nelander, B., J. Chem. Phys., 1987, vol. 86, no. 9, p. 4831.

    Article  CAS  Google Scholar 

  36. Papineau, N., Camy-Peyret, C., Fraud, J.-M., and Guelachvili, G., J. Mol. Spectrosc., 1982, vol. 92, no. 2, p. 451.

    Article  CAS  Google Scholar 

  37. Van Duijneveldt van de Rijdt, J.G.C.M. and van Duijneveldt, F.B., Chem. Phys., 1993, vol. 175, nos. 2–3, p. 271.

    Article  Google Scholar 

  38. Ayers, G.P. and Pullin, A.D.E., Spectrochim. Acta, Part A, 1976, vol. 32, no. 10, p. 1629.

    Article  Google Scholar 

  39. Starzak, M. and Mathlouthib, M., Food Chem. Toxicol., 2003, vol. 82, no. 1, p. 3.

    CAS  Google Scholar 

  40. Sirotkin, D.A., Cand. Sci. (Chem.) Dissertation, Moscow, 2004.

  41. Gorbaty, Y.E. and Kalinichev, A.G., J. Phys. Chem., 1995, vol. 99, no. 15, p. 5336.

    Article  CAS  Google Scholar 

  42. Ohtaki, H., Radnai, T., and Yamaguchi, T., Chem. Soc. Rev., 1997, vol. 26, no. 1, p. 41.

    Article  CAS  Google Scholar 

  43. Kalinichev, A.G. and Bass, J.D., J. Phys. Chem., 1997, vol. 101, no. 50, p. 9720.

    CAS  Google Scholar 

  44. Krishtal, S., Kiselev, M., Puhovski, Y., Kerdcharoen, T., Hannongbua, S., and Heinzinger, K., Z. Naturforsch. A, 2001, vol. 56, no. 8, p. 579.

    CAS  Google Scholar 

  45. Libnau, F.O., Christy, A.A., and Kvalheim, O.M., Appl. Spectrosc., 1995, vol. 49, no. 10, p. 1431.

    Article  CAS  Google Scholar 

  46. Narten, A.H., J. Chem. Phys., 1964, vol. 41, no. 5, p. 1318.

    Article  CAS  Google Scholar 

  47. Krestov, G. A., Ionnaya sol’vatatsiya (Ion Solvation), Moscow: Nauka, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Oparin.

Additional information

Original Russian Text © R.D. Oparin, M.V. Fedotova, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 10, pp. 1618–1632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oparin, R.D., Fedotova, M.V. Effect of electrolyte additions and temperature on the structure self-organization of the water subsystem in water-supercritical Co2-NaCl ternary mixtures. Russ J Gen Chem 77, 1686–1699 (2007). https://doi.org/10.1134/S1070363207100064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363207100064

Keywords

Navigation