Skip to main content
Log in

Potential functions of internal rotation in n-alkanes and its contribution to thermodynamic properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The potential functions of braked internal rotation V(ϕ) in n-alkanes (ethane, propane, butane, n-pentane, n-hexane, n-heptane) were calculated by ab initio and DFT methods with the 6-311++G(3df,3pd) basis set. The functions were approximated as a series of six cosines. The dependences of V(ϕ) on the length of the hydrocarbon chain in n-alkanes were analyzed. The heights of the trans-cis and trans-gauche barriers and the differences between the energies of the trans and gauche conformers were calculated and compared with the experimental data. From the calculated geometric parameters and V(ϕ), the contributions of the braked internal rotation to the enthalpy, entropy, heat capacity, and Gibbs free energy at 298 K were determined. The contributions of internal rotations are transferable within the framework of additive approaches. The generalized function V av(ϕ) for n-alkanes and averaged contributions of internal rotation of the C-C bonds and CH3- and -CH2- tops to the thermodynamic properties were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Internal Rotation of Molecules, Orville-Thomas, W.J., Ed., London: Wiley, 1974.

    Google Scholar 

  2. Mizushima, S., Structure of Molecules and Internal Rotation, New York: Academic, 1954.

    Google Scholar 

  3. Bader, R.F.M., Atoms in Molecules: a Quantum Theory, Oxford: Clarendon, 1994.

    Google Scholar 

  4. Konformatsionnyi analiz uglevodorodov i ikh proizvodnykh (Conformational Analysis of Hydrocarbons and Their Derivatives), Vereshchagin, A.N., Kataev, V.E., Bredikhin, A.A., Timosheva, A.P., Kovylyaeva T.I., and Kazakova, E.Kh., Eds., Moscow: Nauka, 1990.

    Google Scholar 

  5. Eliel, E.L., Allinger, N.L., Angyal, S.J., and Morrison, G.A., Conformational Analysis, New York: Interscience, 1965.

    Google Scholar 

  6. Dashevskii, V.G., Konformatsionnyi analiz organicheskikh molekul (Conformational Analysis of Organic Molecules), Moscow: Khimiya, 1982.

    Google Scholar 

  7. Cox, J.D. and Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, London: Academic, 1970.

    Google Scholar 

  8. Herrebout, W.A., Veken, B.J. van der, Wang, A., and Durig, J.R., J. Phys. Chem., 1995, vol. 99, no. 2, p. 578.

    Article  CAS  Google Scholar 

  9. Smith, G.D. and Jaffe, R.L., J. Phys. Chem., 1996, vol. 100, no. 48, p. 18 718.

    Article  CAS  Google Scholar 

  10. Katzer, G. and Sax, A.F., Chem. Phys. Lett., 2003, vol. 368, nos. 3–4, p. 473.

    Article  CAS  Google Scholar 

  11. Vansteenkiste, P., Speybroeck, V. van, Marin, G.B., and Waroquier, M., J. Phys. Chem. A, 2003, vol. 107, no. 17, p. 3139.

    Article  CAS  Google Scholar 

  12. Heenan, R.K. and Bartell, L.S., J. Chem. Phys., 1983, vol. 78, no. 3, p. 1270.

    Article  CAS  Google Scholar 

  13. Durig, J.R., Wang, A., Beshir, W., and Little, T.S., J. Raman Spectrosc., 1991, vol. 11, p. 683.

    Article  Google Scholar 

  14. Stidham, H.D. and Durig, J.R., Spectrochim. Acta (A), 1986, vol. 42, no. 2/3, p. 105.

    Article  Google Scholar 

  15. Benson, S.W., Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters, New York: Wiley, 1968.

    Google Scholar 

  16. Pedley, J., Naylor, R., and Kirby, S., Thermochemical Data of Organic Compounds, London: Chapman and Hall, 1986.

    Google Scholar 

  17. Orlov, Yu.D., Lebedev, Yu.A., and Saifullin, I.Sh., Termokhimiya organicheskikh svobodnykh radikalov (Thermochemistry of Organic Free Radicals), Moscow: Nauka, 2001.

    Google Scholar 

  18. Localization and Delocalization in Quantum Chemistry, vol. 1: Atoms and Molecules in the Ground State, Chalvet, O., Daudel, R., Diner, S., and Malrieu, J.-P., Eds., Dordrecht: Reidel, 1975.

    Google Scholar 

  19. Tatevskii, V.M., Teoriya fiziko-khimicheskikh svoistv molekul i veshchestv (Theory of Physicochemical Properties of Molecules and Substances), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  20. Golovanov, I.B., Ivanitskii, G.R., and Tsygankova, I.G., Dokl. Ross. Akad. Nauk, 1996, vol. 350, no. 4, p. 489.

    CAS  Google Scholar 

  21. Pu, J., Gao, J., and Truhlar, D.G., J. Phys. Chem. A, 2004, vol. 108, no. 4, p. 632.

    Article  CAS  Google Scholar 

  22. Pu, J., Gao, J., and Truhlar, D.G., J. Phys. Chem. A, 2004, vol. 108, no. 25, p. 5454.

    Article  CAS  Google Scholar 

  23. Jorgensen, W.L., J. Phys. Chem., 1983, vol. 87, no. 26, p.5304.

    Article  CAS  Google Scholar 

  24. Profeta, S., Jr., Unwalla, R.J., Nguyen, B.T., and Cartledge, F.K., J. Comput. Chem., 1985, vol. 7, no. 4, p. 528.

    Article  Google Scholar 

  25. Tsuzuki, S., Schafer, L., Goto, H., Jemmis, E.D., Hosoya, H., Siam, K., Tanabe, K., and Osawa, E., J. Am. Chem. Soc., 1991, vol. 113, no. 12, p. 4665.

    Article  CAS  Google Scholar 

  26. Wiberg, K.B. and Murcko, M.A., J. Am. Chem. Soc., 1988, vol. 110, no. 24, p. 8029.

    Article  CAS  Google Scholar 

  27. Koglin, E. and Meier, R.J., Chem. Phys. Lett., 1999, vol. 312, nos. 2–4, p. 284.

    Article  CAS  Google Scholar 

  28. Wang, F. and Downton, M., J. Phys. B: Mol. Opt. Phys., 2004, vol. 37, p. 557.

    Article  CAS  Google Scholar 

  29. Raghavachari, K., J. Chem. Phys., 1984, vol. 81, no. 3, p.1383.

    Article  CAS  Google Scholar 

  30. Krishnan, R., Frisch, M.L., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, no. 7, p. 4244.

    Article  CAS  Google Scholar 

  31. Schulman, J.M. and Disch, R.L., Chem. Phys. Lett., 1985, vol. 113, p. 291.

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrewski, V.G., Montgomery, J.A., Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., and Pople, J.A., Gaussian 98W, Rev. A.11, Pittsburgh, PA: Gaussian, 2001.

    Google Scholar 

  33. Gurvich, L.V., Veyts, I.V., and Alcock, C.B., Thermodynamic Properties of Individual Substances, New York: Hemisphere, 1989.

    Google Scholar 

  34. Durig, J.R. and Compton, D.A.C., J. Phys. Chem., 1979, vol. 83, no. 2, p. 265.

    Article  CAS  Google Scholar 

  35. Compton, D.A.C., Montrero, S., and Murphy, W.F., J. Phys. Chem., 1980, vol. 84, no. 26, p. 3587.

    Article  CAS  Google Scholar 

  36. Weiss, S. and Leroi, G.E., J. Chem. Phys., 1968, vol. 48, no. 3, p. 962.

    Article  CAS  Google Scholar 

  37. Hoyland, J.R., J. Chem. Phys., 1969, vol. 50, no. 6, p. 2775.

    Article  CAS  Google Scholar 

  38. Bradfort, W.S., Fitzwater, S., and Bartell, L.S., J. Mol. Struct., 1977, vol. 38, p. 185.

    Article  Google Scholar 

  39. Rosenthal, L., Rabolt, J.F., and Hummel, J., J. Chem. Phys., 1982, vol. 76, no. 2, p. 817.

    Article  CAS  Google Scholar 

  40. Devaure, J. and Lascombe, J., Nouv. J. Chem., 1979, vol. 3, no. 3, p. 579.

    CAS  Google Scholar 

  41. Kint, S., Scherer, J., and Snyder, R.G., J. Chem. Phys., 1980, vol. 73, no. 6, p. 2599.

    Article  CAS  Google Scholar 

  42. Steel, D., J. Chem. Soc., Faraday Trans 2, 1985, vol. 81, no. 7, p. 1077.

    Article  Google Scholar 

  43. Colombo, L. and Zerbi, G., J. Chem. Phys., 1980, vol. 73, no. 4, p. 2013.

    Article  CAS  Google Scholar 

  44. Murphy, W.F., Fernandez-Sanchez, J.M., and Raghavachari, K., J. Phys. Chem., 1991, vol. 95, no. 3, p. 1124.

    Article  CAS  Google Scholar 

  45. Huttner, W., Majer, W., and Kastle, H., Mol. Phys., 1989, vol. 67, no. 1, p. 131.

    Article  Google Scholar 

  46. Rasanen, M. and Bondybey, V.E., J. Chem. Phys., 1985, vol. 82, no. 10, p. 4718.

    Article  CAS  Google Scholar 

  47. Verma, A.L., Murphy, W.F., and Bernstein, H.J., J. Chem. Phys., 1974, vol. 60, no. 4, p. 1540.

    Article  CAS  Google Scholar 

  48. Kanesaka, I., Snyder, R.G., and Strauss, H.L., J. Chem. Phys., 1986, vol. 84, no. 1, p. 395.

    Article  CAS  Google Scholar 

  49. Sheppard, N. and Szasz, G.J., J. Chem. Phys., 1949, vol. 17, no. 1, p. 86.

    Article  CAS  Google Scholar 

  50. Maissara, M., Cornut, J.C., Devaure, J., and Lascombe, J.J., Spectrosc. Int. J., 1983, vol. 2, p. 104.

    CAS  Google Scholar 

  51. Snyder, R.G., J. Chem. Phys., 1967, vol. 47, no. 4, p. 1316.

    Article  CAS  Google Scholar 

  52. Speybroeck V. van, Neck, D. van, and Waroquier, M., J. Phys. Chem. A, 2002, vol. 106, no. 38, p. 8945.

    Article  CAS  Google Scholar 

  53. East, A.L. and Radom, L., J. Chem. Phys., 1997, vol. 106, no. 16, p.6655.

    Article  CAS  Google Scholar 

  54. Hoyland, J.R., J. Chem. Phys., 1968, vol. 49, no. 4, p. 1908.

    Article  CAS  Google Scholar 

  55. Karpfen, A., Choi, C.H., and Kertesz, M., J. Phys. Chem. A, 1997, vol. 101, no. 40, p. 7426.

    Article  CAS  Google Scholar 

  56. Jensen, F., Introduction to Computational Chemistry, New York: Wiley, 1999.

    Google Scholar 

  57. Sverdlov, L.M., Kovner, M.A., and Krainov, E.P., Kolebatel’nye spektry mnogoatomnykh molekul (Vibration Spectra of Polyatomic Molecules), Moscow: Nauka, 1970.

    Google Scholar 

  58. Harmony, M.D., Lourie, V.W., Kuszkowski, R.L., Schwendemon, R.H., Ramsay, D.A., Lovas, F.J., Lafferty, W.J., and Maki, A.G., J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 3, p. 619.

    Article  CAS  Google Scholar 

  59. Knizhnik, A.V. and Frolov, Yu.L., Zh. Strukt. Khim., 2002, vol. 43, no. 1, p. 45.

    Google Scholar 

  60. Abramenkov, A.V., Zh. Fiz. Khim., 1995, vol. 69, no. 6, p. 1048.

    CAS  Google Scholar 

  61. Godnev, I.N., Vychislenie termodinamicheskikh funktsii po molekulyarnym dannym (Calculation of Thermodynamic Functions from Molecular Data), Moscow: Gostekhteorizdat, 1956.

    Google Scholar 

  62. Yarovoi, S.S., Metody rascheta fiziko-khimicheskikh svoistv uglevodorodov (Methods for Calculating Physicochemical Properties of Hydrocarbons), Moscow: Khimiya, 1978.

    Google Scholar 

  63. Golovanov, I.B. and Zhenodarova, S.M., Zh. Obshch. Khim., 2004, vol. 74, no. 5, p. 765.

    Google Scholar 

  64. Bader, R.F.W. and Bayles, D., J. Phys. Chem. A, 2000, vol. 104, no. 23, p. 5579.

    Article  CAS  Google Scholar 

  65. Tatevskii, V.M., Klassicheskaya teoriya stroeniya molekul i kvantovaya mekhanika (Classical Theory of Molecular Structure and Quantum Mechanics), Moscow: Khimiya, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Turovtsev.

Additional information

Original Russian Text © V.V. Turovtsev, Yu.D. Orlov, A.N. Kizin, Yu.A. Lebedev, 2007, published in Zhurnal Obshchei Khimii, 2007, Vol. 77, No. 9, pp. 1508–1516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turovtsev, V.V., Orlov, Y.D., Kizin, A.N. et al. Potential functions of internal rotation in n-alkanes and its contribution to thermodynamic properties. Russ J Gen Chem 77, 1580–1588 (2007). https://doi.org/10.1134/S1070363207090137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363207090137

Keywords

Navigation