Skip to main content
Log in

Heteroleptic Zn(II) Halide Complexes with Iodine-Substituted Benzonitriles: Peculiarities of the Halogen Bond in the Solid State

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reactions of zinc(II) bromide with 3- and 4-iodobenzonitriles (3-I-BzCN and 4-I-Bz-CN) afford heteroligand complexes [L2ZnBr2] (L = 3-I-BzCN (I) and 4-I-BzCN (II)), whose structures are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2253175 (I) and 2253176 (II)). Both crystal structures contain halogen bonds I···Br linking the [ZnBr2L2] fragments into supramolecular layers (I) or chains (II). The energies of these noncovalent interactions are estimated by quantum-chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Desiraju, G.R., Ho, P.S., Kloo, L., et al., Pure Appl. Chem., 2013, vol. 85, no. 8, p. 1711. https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  2. Bartashevich, E.V., Sobalev, S.A., Matveychuk, Y.V., et al., J. Struct. Chem., 2021, vol. 62, no. 10, p. 1607. https://doi.org/10.1134/S0022476621100164

    Article  CAS  Google Scholar 

  3. Novikov, A.S. and Gushchin, A.L., J. Struct. Chem., 2021, vol. 62, no. 9, p. 1325. https://doi.org/10.1134/S0022476621090018

    Article  CAS  Google Scholar 

  4. Matveychuk, Y.V., Ilkaeva, M.V., Vershinina, E.A., et al., J. Mol. Struct., 2016, vol. 1119, p. 227. https://doi.org/10.1016/j.molstruc.2016.04.072

    Article  CAS  Google Scholar 

  5. Bartashevich, E.V., Grigoreva, E.A., Yushina, I.D., et al., Russ. Chem. Bull., 2017, vol. 66, no. 8, p. 1345. https://doi.org/10.1007/s11172-017-1898-1

    Article  CAS  Google Scholar 

  6. Bol’shakov, O.I., Yushina, I.D., Stash, A.I., et al., Struct. Chem., 2020, vol. 31, no. 5, p. 1729. https://doi.org/10.1007/s11224-020-01584-y

    Article  CAS  Google Scholar 

  7. Bartashevich, E.V., Stash, A.I., Batalov, V.I., et al., Struct. Chem., 2016, vol. 27, no. 5, p. 1553. https://doi.org/10.1007/s11224-016-0785-y

    Article  CAS  Google Scholar 

  8. Bartashevich, E.V., Pendás, Á.M., and Tsirelson, V.G., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 31, p. 16780. https://doi.org/10.1039/c4cp01257g

    Article  CAS  PubMed  Google Scholar 

  9. Kolář, M.H. and Hobza, P., Chem. Rev., 2016, vol. 116, no. 9, p. 5155. https://doi.org/10.1021/acs.chemrev.5b00560

    Article  CAS  PubMed  Google Scholar 

  10. Metrangolo, P., Neukirch, H., Pilati, T., et al., Acc. Chem. Res., 2005, vol. 38, no. 5, p. 386. https://doi.org/10.1021/ar0400995

    Article  CAS  PubMed  Google Scholar 

  11. Katlenok, E.A., Haukka, M., Levin, O.V., et al., Chem.-Eur. J., 2020, vol. 26, no. 34, p. 7692. https://doi.org/10.1002/chem.202001196

    Article  CAS  PubMed  Google Scholar 

  12. Torubaev, Y.V. and Skabitsky, I.V., CrystEngComm, 2020, vol. 22, no. 40, p. 6661. https://doi.org/10.1039/d0ce01093f

    Article  CAS  Google Scholar 

  13. Rozhkov, A.V., Novikov, A.S., Ivanov, D.M., et al., Cryst. Growth Des., 2018, vol. 18, no. 6, p. 3626. https://doi.org/10.1021/acs.cgd.8b00408

    Article  CAS  Google Scholar 

  14. Kryukova, M.A., Sapegin, A.V., Novikov, A.S., et al., Crystals, 2020, vol. 10, no. 5. https://doi.org/10.3390/cryst10050371

  15. Eliseeva, A.A., Ivanov, D.M., Novikov, A.S., et al., CrystEngComm, 2019, vol. 21, no. 4, p. 616. https://doi.org/10.1039/c8ce01851k

    Article  CAS  Google Scholar 

  16. Bokach, N.A., Suslonov, V.V., Eliseeva, A.A., et al., CrystEngComm, 2020, vol. 22, no. 24, p. 4180. https://doi.org/10.1039/c6ra90077a

    Article  CAS  Google Scholar 

  17. Eliseeva, A.A., Ivanov, D.M., and Rozhkov, A.V., et al, J. Am. Chem. Soc., 2021, vol. 1, no. 3, p. 354. https://doi.org/10.1021/jacsau.1c00012

    Article  CAS  Google Scholar 

  18. Zelenkov, L.E., Ivanov, D.M., Avdontceva, M.S., et al., Z. Krist. Cryst. Mater., 2019, vol. 234, no. 1, p. 9. https://doi.org/10.1515/zkri-2018-2111

    Article  CAS  Google Scholar 

  19. Novikov, A.S., Ivanov, D.M., Avdontceva, M.S., et al., CrystEngComm, 2017, vol. 19, no. 18, p. 2517. https://doi.org/10.1039/C7CE00346C

    Article  CAS  Google Scholar 

  20. Cheranyova, A.M. and Ivanov, D.M., Crystals, 2021, vol. 11, no. 7. https://doi.org/10.3390/cryst11070835

  21. Torubaev, Y.V., Skabitskiy, I.V., Pavlova, A.V., et al., New J. Chem., 2017, vol. 41, no. 9, p. 3606. https://doi.org/10.1039/C6NJ04096A

    Article  CAS  Google Scholar 

  22. Shestimerova, T.A., Yelavik, N.A., Mironov, A.V., et al., Inorg. Chem., 2018, vol. 57, no. 7, p. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265

    Article  CAS  PubMed  Google Scholar 

  23. Eich, A., Köppe, R., Roesky, P.W., et al., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 9, p. 1292. https://doi.org/10.1002/ejic.201900018

    Article  CAS  Google Scholar 

  24. Bykov, A.V., Shestimerova, T.A., Bykov, M.A., et al., Int. J. Mol. Sci., 2023, vol. 24, no. 3, p. 2201. https://doi.org/10.3390/ijms24032201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shestimerova, T.A., Golubev, N.A., Yelavik, N.A., et al., Cryst. Growth Des., 2018, vol. 18, no. 4, p. 2572. https://doi.org/10.1021/acs.cgd.8b00179

    Article  CAS  Google Scholar 

  26. Suslonov, V.V., Soldatova, N.S., Ivanov, D.M., et al., Cryst. Growth Des., 2021, vol. 21, no. 9, p. 5360. https://doi.org/10.1021/acs.cgd.1c00654

    Article  CAS  Google Scholar 

  27. Soldatova, N.S., Suslonov, V.V., Kissler, T.Y., et al., Crystals, 2020, vol. 10, no. 3. https://doi.org/10.3390/cryst10030230

  28. Aliyarova, I.S., Ivanov, D.M., Soldatova, N.S., et al., Cryst. Growth Des., 2021, vol. 21, no. 2, p. 1136. https://doi.org/10.1021/acs.cgd.0c01463

    Article  CAS  Google Scholar 

  29. Soldatova, N.S., Postnikov, P.S., Suslonov, V.V., et al., Org. Chem. Front., 2020, vol. 7, no. 16, p. 2230. https://doi.org/10.1039/d0qo00678e

    Article  CAS  Google Scholar 

  30. Hu, C., Li, Q., and Englert, U., CrystEngComm, 2003, vol. 5, no. 94, p. 519. https://doi.org/10.1039/b314522k

    Article  CAS  Google Scholar 

  31. Wang, A. and Englert, U., Acta Crystallogr., Sect. C: Struct. Chem., 2017, vol. 73, no. 10, p. 803. https://doi.org/10.1107/S2053229617013201

    Article  CAS  Google Scholar 

  32. Hu, C., Kalf, I., and Englert, U., CrystEngComm, 2007, vol. 9, no. 7, p. 603. https://doi.org/10.1039/b701907f

    Article  CAS  Google Scholar 

  33. Zordan, F. and Brammer, L., Cryst. Growth Des., 2006, vol. 6, no. 6, p. 1374. https://doi.org/10.1021/cg050670m

    Article  CAS  Google Scholar 

  34. Awwadi, F.F., Alwahsh, M.I., Turnbull, M.M., et al., Dalton Trans., 2021, vol. 50, no. 12, p. 4167. https://doi.org/10.1039/d0dt04071a

    Article  CAS  PubMed  Google Scholar 

  35. Puttreddy, R., von Essen, C., and Rissanen, K., Eur. J. Inorg. Chem., 2018, vol. 2018, nos. 20−21, p. 2393. https://doi.org/10.1002/ejic.201800144

    Article  CAS  Google Scholar 

  36. Puttreddy, R., von Essen, C., Peuronen, A., et al., CrystEngComm, 2018, vol. 20, no. 14, p. 1954. https://doi.org/10.1039/C8CE00209F

    Article  CAS  Google Scholar 

  37. Awwadi, F.F., Turnbull, M.M., Alwahsh, M.I., et al., New J. Chem., 2018, vol. 42, no. 13, p. 10642. https://doi.org/10.1039/C8NJ00422F

    Article  CAS  Google Scholar 

  38. Qian, W., Yuan, H.-K., Zhang, R., et al., J. Coord. Chem., 2016, vol. 69, no. 23, p. 3593. https://doi.org/10.1080/00958972.2016.1242727

    Article  CAS  Google Scholar 

  39. Zisti, F., Tehrani, A.A., Alizadeh, R., et al., J. Solid State Chem., 2019, vol. 271, p. 29. https://doi.org/10.1016/j.jssc.2018.12.049

    Article  CAS  Google Scholar 

  40. Tehrani, A.A., Abedi, S., and Morsali, A., Cryst. Growth Des., 2017, vol. 17, no. 1, p. 255. https://doi.org/10.1021/acs.cgd.6b01518

    Article  CAS  Google Scholar 

  41. Kryukova, M.A., Ivanov, D.M., Kinzhalov, M.A., et al., Chem.-Eur. J., 2019, vol. 25, no. 60, p. 13671. https://doi.org/10.1002/chem.201902264

    Article  CAS  PubMed  Google Scholar 

  42. Demakova, M.Y., Bolotin, D.S., Bokach, N.A., et al., ChemPlusChem, 2015, vol. 80, no. 11, p. 1607. https://doi.org/10.1002/cplu.201500327

    Article  CAS  PubMed  Google Scholar 

  43. Fischer, M., Wolff, M.C., Del Horno, E., et al., Organometallics, 2020, vol. 39, no. 17, p. 3232. https://doi.org/10.1021/acs.organomet.0c00452

    Article  CAS  Google Scholar 

  44. Ramón, R.S., Gaillard, S., Poater, A., et al., Chem.-Eur. J., 2011, vol. 17, no. 4, p. 1238. https://doi.org/10.1002/chem.201002607

    Article  CAS  PubMed  Google Scholar 

  45. George, A.V., Field, L.D., Malouf, E.Y., et al., J. Organomet. Chem., 1997, vol. 538, nos. 1–2, p. 101. https://doi.org/10.1016/S0022-328X(96)06912-4

    Article  CAS  Google Scholar 

  46. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  47. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  48. Hübschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, no. 6, p. 1281. https://doi.org/10.1107/S0021889811043202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Çelik, Ö., Ide, S., Kurt, M., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2004, vol. 60, no. 4, p. M424. https://doi.org/10.1107/S1600536804004908

    Article  CAS  Google Scholar 

  50. Şahin, E., Ide, S., Ataç, A., et al., J. Mol. Struct., 2002, vol. 616, nos. 1–3, p. 253. https://doi.org/10.1016/S0022-2860(02)00346-0

    Article  Google Scholar 

  51. Smirnov, A.S., Butukhanova, E.S., Bokach, N.A., et al., Dalton Trans., 2014, vol. 43, no. 42, p. 15798. https://doi.org/10.1039/c4dt01812e

    Article  CAS  PubMed  Google Scholar 

  52. Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006. https://doi.org/10.1021/j100881a503

    Article  CAS  Google Scholar 

  53. Mantina, M., Chamberlin, A.C., Valero, R., et al., J. Phys. Chem. A, 2009, vol. 113, no. 19, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cavallo, G., Metrangolo, P., Milani, R., et al., Chem. Rev., 2016, vol. 116, no. 4, p. 2478. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chai, J.Da. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, no. 44, p. 6615. https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  56. Barros, C.L., de Oliveira, P.J.P., Jorge, F.E., et al., Mol. Phys., 2010, vol. 108, no. 15, p. 1965. https://doi.org/10.1080/00268976.2010.499377

    Article  CAS  Google Scholar 

  57. Jorge, F.E., Canal Neto, A., Camiletti, G.G., et al., J. Chem. Phys., 2009, vol. 130, no. 6, p. 064108. https://doi.org/10.1063/1.3072360

    Article  CAS  PubMed  Google Scholar 

  58. Bader, R.F.W., Chem. Rev., 1991, vol. 91, no. 5, p. 893. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  59. Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, no. 5, p. 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  60. Bikbaeva, Z.M., Novikov, A.S., Suslonov, V.V., et al., Dalton Trans., 2017, vol. 46, no. 30, p. 10090. https://doi.org/10.1039/c7dt01960b

    Article  CAS  PubMed  Google Scholar 

  61. Kolari, K., Sahamies, J., Kalenius, E., et al., Solid State Sci., 2016, vol. 60, p. 92. https://doi.org/10.1016/j.solidstatesciences.2016.08.005

    Article  CAS  Google Scholar 

  62. Melekhova, A.A., Novikov, A.S., Panikorovskii, T.L., et al., New J. Chem., 2017, vol. 41, no. 23, p. 14557. https://doi.org/10.1039/c7nj02798b

    Article  CAS  Google Scholar 

  63. Novikov, A.S. and Kuznetsov, M.L., Inorg. Chim. Acta, 2012, vol. 380, no. 1, p. 78. https://doi.org/10.1016/j.ica.2011.08.016

    Article  CAS  Google Scholar 

  64. Johnson, E.R., Keinan, S., Mori-Sánchez, P., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 18, p. 6498. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bartashevich, E.V. and Tsirelson, V.G., Russ. Chem. Rev., 2014, vol. 83, no. 12, p. 1181. https://doi.org/10.1070/RCR4440

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (structural characterization of samples, project no. 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Adonin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershinin, M.A., Novikov, A.S., Sokolov, M.N. et al. Heteroleptic Zn(II) Halide Complexes with Iodine-Substituted Benzonitriles: Peculiarities of the Halogen Bond in the Solid State. Russ J Coord Chem 50, 1–6 (2024). https://doi.org/10.1134/S1070328423700690

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700690

Keywords:

Navigation