Skip to main content
Log in

Synthesis, Structure, and Electron Density Distribution in Crystals of K2(L-Trp)2(H2O) (HTrp = Tryptophane)

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The first salt of alkaline metal and L-tryptophane, K2(L-Trp)2(H2O) (I), is synthesized by the reaction of L-tryptophane (HTrp) with potassium hydroxide in an aqueous-alcohol solution. Compound I is characterized by IR and 1H NMR spectroscopy and X-ray diffraction (XRD) (CIF file CCDC no. 2184367). Compound I is found to have a layered structure due to the presence of the bridging water molecule and chelate-bridging anions. The quantum chemical calculations of the crystal structure (PBE, plane-wave basis set, 800 eV) is used to evaluate the strength of interactions of the potassium ion with the L-tryptophanate anion (depending on the coordination type) and the influence of the anion conformation on the strength of coordination, hydrophobic, and hydrophilic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Soldevila-Barreda, J.J. and Metzler-Nolte, N., Chem. Rev., 2019, vol. 119, no. 2, p. 829. https://doi.org/10.1021/acs.chemrev.8b00493

    Article  CAS  PubMed  Google Scholar 

  2. Saboury, A.A., J. Iran. Chem. Soc., 2006, vol. 3, no. 1, p. 1. https://doi.org/10.1007/BF03245784

    Article  CAS  Google Scholar 

  3. Poursharifi, M., Wlodarczyk, M.T., and Mieszawska, A.J., Inorganics, 2019, vol. 7, no. 1, p. 2. https://doi.org/10.3390/inorganics7010002

    Article  CAS  Google Scholar 

  4. Palermo, G., Spinello, A., Saha, A., et al., Expert Opin. Drug Discov., 2021, vol. 16, no. 5, p. 497. https://doi.org/10.1080/17460441.2021.1851188

    Article  CAS  PubMed  Google Scholar 

  5. Vidossich, P. and Magistrato, A., Biomolecules, 2014, vol. 4, no. 3, p. 616. https://doi.org/10.3390/biom4030616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palermo, G., Magistrato, A., Riedel, T., et al., ChemMedChem, 2016, vol. 11, no. 12, p. 1199. https://doi.org/10.1002/cmdc.201500478

    Article  CAS  PubMed  Google Scholar 

  7. Dey, D. and Basu, S., J. Lumin., 2011, vol. 131, no. 4, p. 732. https://doi.org/10.1016/j.jlumin.2010.11.027

    Article  CAS  Google Scholar 

  8. Mosae Selvakumar, P., Suresh, E., and Subramanian, P.S., Polyhedron, 2009, vol. 28, no. 2, p. 245. https://doi.org/10.1016/j.poly.2008.10.072

    Article  CAS  Google Scholar 

  9. Maclaren, J.K. and Janiak, C., Inorg. Chim. Acta, 2012, vol. 389, p. 183. https://doi.org/10.1016/j.ica.2012.03.010

    Article  CAS  Google Scholar 

  10. Wang, J., Xu, X.-Y., Ma, W.-X., et al., Jiegou Huaxue, 2008, vol. 27, p. 153.

    Google Scholar 

  11. Wang, J., Xu, X., Ma, W., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, no. 11, p. m2867. https://doi.org/10.1107/S1600536807053421

    Article  CAS  Google Scholar 

  12. Xie, Y., Wu, H.-H., Yong, G.-P., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, no. 9. p. m2089. https://doi.org/10.1107/S1600536806030364

    Article  CAS  Google Scholar 

  13. Mendiratta, S., Usman, M., Luo, T.-T., et al., Cryst. Growth Des., 2014, vol. 14, no. 4, p. 1572. https://doi.org/10.1021/cg401472k

    Article  CAS  Google Scholar 

  14. Xiao, D.-R., Zhang, G.-J., Liu, J.-L., et al., Dalton Trans., 2011, vol. 40, no. 21, p. 5680. https://doi.org/10.1039/C1DT10262A

    Article  CAS  PubMed  Google Scholar 

  15. Mendiratta, S., Tseng, T.-W., Luo, T.-T., et al., Cryst. Growth Des., 2018, vol. 18, no. 5, p. 2672. https://doi.org/10.1021/acs.cgd.8b00012

    Article  CAS  Google Scholar 

  16. Patra, A.K., Bhowmick, T., Ramakumar, S., et al., Dalton Trans., 2008, no. 48, p. 6966. https://doi.org/10.1039/B802948B

  17. Şenel, P., İnci, D., Aydın, R., et al., Appl. Organomet. Chem., 2019, vol. 33, no. 10, p. E5122. https://doi.org/10.1002/aoc.5122

    Article  CAS  Google Scholar 

  18. Kumita, H., Kato, T., Jitsukawa, K., et al., Inorg. Chem., 2001, vol. 40, no. 16, p. 3936. https://doi.org/10.1021/ic000990p

    Article  CAS  PubMed  Google Scholar 

  19. Lazarenko, V.A., Dorovatovskii, P.V., Zubavichus, Y.V., et al., Crystals, 2017, vol. 7, no. 11, p. 325. https://doi.org/10.3390/cryst7110325

    Article  CAS  Google Scholar 

  20. Svetogorov, R.D., Dorovatovskii, P.V., and Lazarenko, V.A., Cryst. Res. Technol., 2020, vol. 55, no. 5, p. 1900184. https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  21. Kabsch, W., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, vol. 66, no. 2, p. 125. https://doi.org/10.1107/S0907444909047337

    Article  CAS  Google Scholar 

  22. Evans, P., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2006, vol. 62, no. 1, p. 72. https://doi.org/10.1107/S0907444905036693

    Article  CAS  Google Scholar 

  23. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  24. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  25. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  26. Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr., Sect. B: Struct. Sci., 2000 vol. 56, no. 3, p. 501. https://doi.org/10.1107/S0108768199016675

    Article  Google Scholar 

  27. Peresypkina, E.V. and Blatov, V.A., Acta Crystallogr., Sect. B: Struct. Sci., 2000, vol. 56, no. 6, p. 1035. https://doi.org/10.1107/S0108768100011824

    Article  Google Scholar 

  28. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3576. https://doi.org/10.1021/cg500498k

    Article  CAS  Google Scholar 

  29. Kresse, G. and Hafner, J., Phys. Rev. B, 1993, vol. 47, no. 1, p. 558. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  30. Kresse, G. and Hafner, J., Phys. Rev. B, 1994, vol. 49, no. 20, p. 14251. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  31. Kresse, G. and Furthmüller, J., Phys. Rev. B, 1996, vol. 54, no. 16, p. 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  32. Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 1996, vol. 6, no. 1, p. 15. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  33. Kresse, G. and Joubert, D., Phys. Rev. B, 1999, vol. 59, no. 3, p. 1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  34. Gonze, X., Beuken, J.-M., Caracas, R., et al., Comput. Mater. Sci., 2002, vol. 25, no. 3, p. 478. https://doi.org/10.1016/S0927-0256(02)00325-7

    Article  Google Scholar 

  35. Tang, W., Sanville, E., and Henkelman, G., J. Phys.: Condens. Matter., 2009, vol. 21, no. 8, p. 084204. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  PubMed  Google Scholar 

  36. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Clarendon, 1994, p. 438.

    Google Scholar 

  37. Bader, R.F.W., Acc. Chem. Res., 1985, vol. 18, no. 1, p. 9. https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  38. Korlyukov, A.A., Khrustalev, V.N., Vologzhanina, A.V., et al., Acta Crystallogr. Sect. B: Struct. Sci., 2011, vol. 67, no. 4, p. 315. https://doi.org/10.1107/S0108768111022695

    Article  CAS  Google Scholar 

  39. Vologzhanina, A.V., Savchenkov, A.V., Dmitrienko, A.O., et al., J. Phys. Chem. A, 2014, vol. 118, no. 41, p. 9745. https://doi.org/10.1021/jp507386j

    Article  CAS  PubMed  Google Scholar 

  40. Vologzhanina, A.V. and Lyssenko, K.A., Russ. Chem. Bull., 2013, vol. 62, no. 8, p. 1786. https://doi.org/10.1007/s11172-013-0257-0

    Article  CAS  Google Scholar 

  41. Serezhkin, V.N., Serezhkina, L.B., and Vologzhanina, A.V., Acta Crystallogr. Sect. B: Struct. Sci., 2012, vol. 68, no. 3, p. 305. https://doi.org/10.1107/S0108768112014711

    Article  CAS  Google Scholar 

  42. Serezhkin, V.N. and Savchenkov, A.V., Cryst. Growth Des., 2015, vol. 15, no. 6, p. 2878. https://doi.org/10.1021/acs.cgd.5b00326

    Article  CAS  Google Scholar 

  43. Serezhkin, V.N. and Savchenkov, A.V., Cryst. Growth Des., 2020, vol. 20, no. 3, p. 1997. https://doi.org/10.1021/acs.cgd.9b01645

    Article  CAS  Google Scholar 

  44. Serezhkin, V.N. and Savchenkov, A.V., CrystEngComm, 2021, vol. 23, no. 3, p. 562. https://doi.org/10.1039/D0CE01535K

    Article  CAS  Google Scholar 

  45. Vologzhanina, A.V., Crystals, 2019, vol. 9, no. 9, p. 478. https://doi.org/10.3390/cryst9090478

    Article  CAS  Google Scholar 

  46. Zorina-Tikhonova, E.N., Chistyakov, A.S., Kiskin, M.A., et al., Russ. J. Coord. Chem., 2021, vol. 47, no. 6, p. 409. https://doi.org/10.1134/S1070328421060099

    Article  CAS  Google Scholar 

  47. Karnoukhova, V.A., Baranov, V.V., Vologzhanina, A.V., et al., CrystEngComm, 2021, vol. 23, no. 24, p. 4312. https://doi.org/10.1039/D1CE00434D

    Article  CAS  Google Scholar 

  48. Vologzhanina, A.V., Ushakov, I.E., and Korlyukov, A.A., Int. J. Mol. Sci., 2020, vol. 21, no. 23, p. 8970. https://doi.org/10.3390/ijms21238970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, no. 3, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

XRD analysis was carried out using scientific equipment of the National Research Center Kurchatov Institute (Moscow, Russia). A.A. Korlyukov is grateful to the Samara Center for Theoretical Materials Science for access to computational resources and software.

Funding

XRD analysis and quantum chemical calculations were supported by the Russian Science Foundation, project no. 20-13-00241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vologzhanina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondareva, N.A., Purygin, P.P., Zarubin, Y.P. et al. Synthesis, Structure, and Electron Density Distribution in Crystals of K2(L-Trp)2(H2O) (HTrp = Tryptophane). Russ J Coord Chem 49, 267–275 (2023). https://doi.org/10.1134/S1070328423700483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700483

Keywords:

Navigation