Skip to main content
Log in

The First Perylene Complexes of Neodymium and Dysprosium

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Neodymium and dysprosium perylene complexes LnI(Per)(DME)2⋅Per (Ln = Nd, Dy) were obtained for the first time by the reaction of the Ln diiodides with perylene in dimethoxyethane. The structure of dysprosium complex was established by X-ray diffraction (CCDC no. 2184200). Experimental–theoretical electron density analysis was performed to specify the type of coordination between the dysprosium cation and perylene in DyI(Per)(DME)2⋅Per. Despite the identical composition, the Nd and Dy complexes have different structures, which is reflected in their luminescence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Bock, H., Seitz, W., Sievert, M., et al., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, p. 2244.

    Article  CAS  Google Scholar 

  2. Janiak, C. and Hemling, H., Chem. Ber., 1994, vol. 127, p. 1251.

    Article  CAS  Google Scholar 

  3. Nakamura, Y., Tsuihiji, T., and Mita, T., J. Am. Chem. Soc., 1996, vol. 118, p. 1006.

    Article  CAS  Google Scholar 

  4. Feng, X., Pisula, W., and Müllen, K., Pure Appl. Chem., 2009, vol. 81, p. 2203.

    Article  CAS  Google Scholar 

  5. Watson, M.D., Fechtenkötter, A., and Müllen, K., Chem. Rev., 2001, vol. 101, p. 1267.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, J., Pisula, W., and Müllen, K., Chem. Rev., 2007, vol. 107, p. 718.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, X., Xu, Z., Si, W., et al., Nat. Commun., 2017, vol. 8, p. 15073.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu, D., Zhang, Y., Zhang, J., et al., Chem. Asian J., 2015, vol. 10, p. 1344.

    Article  CAS  PubMed  Google Scholar 

  9. Narita, A., Wang, X., Feng, X., and Müllen, K., Chem. Soc. Rev., 2015, vol. 44, p. 6616.

    Article  CAS  PubMed  Google Scholar 

  10. Feiler, L., Langhals, H., and Polborn, K., Liebigs Ann., 1995, p. 1229.

  11. Wasielewski, M.R., Org. Chem., 2006, vol. 71, p. 5051.

    Article  CAS  Google Scholar 

  12. Quante, H., Geerts, Y., and Müllen, K., Chem. Mater., 1997, vol. 9, p. 495.

    Article  CAS  Google Scholar 

  13. Zhao, H., Pfisher, J., and Settles, V., J. Am. Chem. Soc., 2009, vol. 131, p. 15660.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt, R., Oh, J., and Sun, Y., J. Am. Chem. Soc., 2009, vol. 131, p. 6215.

    Article  CAS  PubMed  Google Scholar 

  15. Hassabo, A.G., Mohamed, A.L., and Khattab, T.A., Luminescence, 2022, vol. 37, p. 21.

    Article  CAS  PubMed  Google Scholar 

  16. Martins, S.B., de Andrade, E., and Gautam, S.K., J. Fluoresc., 2021, vol. 31, p. 1855.

    Article  Google Scholar 

  17. Zhang, Q., Zhang, P., Li, S., et al., Dyes Pigm., 2019, vol. 171, p. 107697.

    Article  CAS  Google Scholar 

  18. Pereira-Andrade, E., Brum, S.M., and Policarpo, E.M.C., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 20744.

    Article  CAS  PubMed  Google Scholar 

  19. Porter, L.C., Polam, J.R., and Bodige, S., Inorg. Chem., 1995, vol. 34, p. 998.

    Article  CAS  Google Scholar 

  20. Shibasaki, T., Komine, N., Hirano, M., and Komiya, S., J. Organomet. Chem., 2007, vol. 692, p. 2385.

    Article  CAS  Google Scholar 

  21. Arrais, A., Diana, E., Gervasio, G., et al., Eur. J. Inorg. Chem., 2004, p. 1505.

  22. Murahashi, T., Kato, N., Uemura, T., and Kurosawa, H., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, p. 3509.

    Article  CAS  PubMed  Google Scholar 

  23. Porter, L.C., Polam, J.R., and Bodige, S., Inorg. Chem., 1995, vol. 34, p. 998.

    Article  CAS  Google Scholar 

  24. Lentijo, S., Miguel, J.A., and Espinet, P., Inorg. Chem., 2010, vol. 49, p. 9169.

    Article  CAS  PubMed  Google Scholar 

  25. Weissman, H., Shirman, E., and Ben-Moshe, T., Inorg. Chem., 2007, vol. 46, p. 4790.

    Article  CAS  PubMed  Google Scholar 

  26. Bochkarev, M.N., Fedushkin, I.L., Fagin, A.A., et al., Angew. Chem., Int. Ed. Engl., 1997, vol. 36, p. 133.

    Article  CAS  Google Scholar 

  27. Bochkarev, M.N. and Fagin, A.A., Chem.-Eur. J., 1999, vol. 5, p. 2990.

    Article  CAS  Google Scholar 

  28. Bochkarev, M.N. and Protchenko, A.P., PTE, 1990, no. 1, p. 194.

  29. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2, Madison: Bruker AXS Inc., 2018.

  30. SAINT. Data Reduction and Correction Program. Version 8.38A, Madison: Bruker AXS Inc., 2017.

  31. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sheldrick, G.M., SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS Inc., 2016.

    Google Scholar 

  33. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, p. 3.

    Google Scholar 

  34. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  35. Sheldrick G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  36. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  37. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  CAS  Google Scholar 

  38. Dovesi, R., Erba, A., Orlando, R., et al., WIREs Comput. Mol. Sci., 2018, vol. 8, p. e1360.

    Google Scholar 

  39. Jorge, F.E., Martins, L.S.C., and Franco, M.L., Chem. Phys. Lett., 2016, vol. 643, p. 84.

    Article  CAS  Google Scholar 

  40. Barros, C.L., de Oliveira, P.J.P., Jorge, F.E., et al., Mol. Phys., 2010, vol. 108, p. 1965.

    Article  CAS  Google Scholar 

  41. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257.

    Article  CAS  Google Scholar 

  42. Hariharan, P.C. and Pople, J.A., Theor. Chim. Acta, 1973, vol. 28, p. 213.

    Article  CAS  Google Scholar 

  43. Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, p. 724.

    Article  CAS  Google Scholar 

  44. Spek, A.L., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 9.

    Article  CAS  Google Scholar 

  45. Jelsch, C., Guillot, B., Lagoutte, A., and Lecomte, C., J. Appl. Crystallogr., 2005, vol. 38, p. 38.

    Article  Google Scholar 

  46. Hansen, N.K. and Coppens, P., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1978, vol. 34, p. 909.

    Article  Google Scholar 

  47. Allen, F.H., Kennard, O., Watson, D.G., et al., J. Chem. Soc., Perkin Trans., 1987, vol. 2, p. S1.

    Article  Google Scholar 

  48. Stash, A.I. and Tsirelson, V.G., J. Appl. Crystallogr., 2014, vol. 47, p. 2086.

    Article  CAS  Google Scholar 

  49. Mikheev, N.B., Russ. J. Inorg. Chem., 1984, vol. 29, p. 258.

    Google Scholar 

  50. Bochkarev, M.N., Coord. Chem. Rev., 2004, vol. 248, p. 835.

    Article  CAS  Google Scholar 

  51. Bochkarev, M.N., Fagin, A.A., and Khoroshenkov, G.V., Russ. Chem. Bull. Int. Ed., 2002, vol. 51, p. 1909.

    Article  CAS  Google Scholar 

  52. Evans, W.J., Allen, N.T., and Ziller, J.W., J. Am. Chem. Soc., 2000, vol. 122, p. 11749.

    Article  CAS  Google Scholar 

  53. Shannon, R.D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, p. 751.

    Article  Google Scholar 

  54. Batsanov, S.S., Inorg. Mater., 2001, vol. 37, p. 871.

    Article  CAS  Google Scholar 

  55. Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, p. 171.

    Article  CAS  Google Scholar 

  56. Raymond, K.N. and Eigenbrot, Ch.W., Jr., Acc. Chem. Res., 1980, vol. 13, p. 276.

    Article  CAS  Google Scholar 

  57. Janiack, C.J., Dalton Trans., 2000, p. 3885.

  58. Fukin, G.K. and Cherkasov, A.V., Mendeleev Commun., 2021, vol. 31, p. 182.

    Article  CAS  Google Scholar 

  59. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford: Clarendon, 1990.

    Google Scholar 

  60. Farrugia, L.J., Evans, C., Lentz, D., and Roemer, M., J. Am. Chem. Soc., 2009, vol. 131, p. 1251.

    Article  CAS  PubMed  Google Scholar 

  61. Smol’yakov, A.F., Dolgushin, F.M., Ginzburg, A.G., et al., J. Mol. Struct., 2012, vol. 1014, p. 81.

    Article  Google Scholar 

  62. Fukin, G.K., Cherkasov, A.V., and Rumyantcev, R.V., Mend. Commun., 2019, vol. 29, p. 346.

    Article  CAS  Google Scholar 

  63. Bader, R.W.F. and Gatti, C., Chem. Phys. Lett., 1998, vol. 287, p. 233.

  64. Farrugia, L.J. and Macchi, J., Phys. Chem. A, 2009, vol. 113, p. 100058.

    Article  Google Scholar 

  65. Gatti, C., Electron Density and Chemical Bonding, Berlin: Springer, 2012, vol. 147, p. 193.

    Google Scholar 

  66. Johnson, E.R., Keinan, S., and Mori-Sanchez, P., J. Am. Chem. Soc., 2010, vol. 132, p. 6498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Contreras-Garcia, J., Johnson, E.R., and Keinan, S., J. Chem. Theory Comput., 2011, vol. 7, p. 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Contreras-Garcia, J., Yang, W., and Johnson, E.R., J. Phys. Chem. A, 2011, vol. 115, p. 12983.

    Article  CAS  PubMed  Google Scholar 

  69. Evans, W.J. and Hozbor, M.A., J. Organomet. Chem., 1987, vol. 326, p. 299.

    Article  CAS  Google Scholar 

  70. Hamasaki, A., Kubo, K., Harashima, M., et al., J. Phys. Chem. B, 2021, vol. 125, p. 2987.

    Article  CAS  PubMed  Google Scholar 

  71. Yago, T., Tamaki, Y., Furube, A., and Katoh, R., Crystal. Chem. Lett., 2007, vol. 36, p. 370.

    Article  CAS  Google Scholar 

  72. Liu, H.B., Li, Y.L., Xiao, S.Q., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 10794.

    Article  CAS  PubMed  Google Scholar 

  73. Barashkov, N.N., Sakhno, T.V., Nurmukhame-tov, R.N., and Khakhel’, O.A., Usp. Khim., 1993, vol. 62, p. 579.

    Article  CAS  Google Scholar 

  74. Ochi, J., Tanaka, K., and Chujo, Y., Inorg. Chem., 2021, vol. 60, p. 8990.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the center for collective use “Analytical Center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences” supported by the grant “Provision of the Development of the Material and Technical Infrastructure of Centers for Collective Use” (unique identifier RF–2296.61321X0017, contract number 075-15-2021-670).

Funding

This study was supported by the Russian Science Foundation (grant no. 22-23-00547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Balashova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashova, T.V., Polyakova, S.K., Fagin, A.A. et al. The First Perylene Complexes of Neodymium and Dysprosium. Russ J Coord Chem 49, 257–266 (2023). https://doi.org/10.1134/S1070328423700471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700471

Keywords:

Navigation