Skip to main content
Log in

Dimolybdenum Perfluorotetrabenzoate and Silver Perfluorocyclohexanoate: Synthesis, Evaporation, and Thermodynamic Characteristics

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Anhydrous dimolybdenum perfluorotetrabenzoate Мо2(ООСС6F5)4 (I) and silver perfluorocyclohexanoate AgOOCC6F11 (II) are synthesized for the first time. Complex I is synthesized by the transcarboxylation of dimolybdenum tetraacetate with pentafluorobenzoic acid. Compound II is synthesized from freshly prepared silver oxide and perfluorocyclohexanoic acid. The evaporation of the complexes is studied by the Knudsen method with mass spectral analysis of the gas phase. The sublimation of Мо2(ООСС6F5)4 is congruent. The enthalpy of sublimation and the equation of the temperature dependence of the vapor pressure are found. The evaporation of AgOOCC6F11 is accompanied by the complete thermal decomposition with the formation of Ag(s) and mainly С6F12, С6F10, and CO2 molecules. The standard enthalpies of thermal decomposition (\({{\Delta }_{r}}H_{{298.15}}^{^\circ }\)(5) = 439.5 ± 16.4 kJ/mol, \({{\Delta }_{r}}H_{{298.15}}^{^\circ }\)(6) = 325.2 ± 14.0 kJ/mol) and formation of the silver complex (\({{\Delta }_{f}}H_{{298.15}}^{^\circ }\) (AgOOCC6F11, c) = –2751.0 ± 24.4 kJ/mol) are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Alikhanyan, A.S., Malkerova, I.P., Il’ina, E.G., et al., Zh. Neorg. Khim., 1993, vol. 38, no. 10, p. 1736.

    CAS  Google Scholar 

  2. Kharitonenko, N.M., Rykov, A.N., Korenev, Yu.M., et al., Zh. Neorg. Khim., 1997, vol. 42, no. 7, p. 1359.

    Google Scholar 

  3. Kiseleva E.A., Besedin D.V., and Krenev Yu.M., Zh. Neorg. Khim., 2005, vol. 79, no. 4, p. 629.

    Google Scholar 

  4. Alikhanyan, A.S., Didenko, K.V., Girichev, G.V., et al., Struct. Chem., 2011, no. 22, p. 401. https://doi.org/10.1007/s11224-010-9722-7

  5. Malkerova, I.P., Kamkin, N.N., Dobrokhotova, Zh.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 7, p. 665.

    Article  CAS  Google Scholar 

  6. Morozova, E.A., Malkerova, I.P., Kiskin, M.A., et al., Russ. J. Inorg. Chem., 2018, vol. 63, no. 11, p. 1436. https://doi.org/10.1134/S0036023618110128

    Article  CAS  Google Scholar 

  7. Malkerova, I.P., Belova, E.V., Kayumova, D.B., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 5, p. 569. https://doi.org/10.1134/S0036023623600557

    Article  CAS  Google Scholar 

  8. Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 2, p. 84. https://doi.org/10.1134/S107032842202004X

    Article  CAS  Google Scholar 

  9. Malkerova, I.P., Kayumova, D.B., Belova, E.V., et al., Russ. J. Coord. Chem., 2022, vol. 48, no. 10, p. 608. https://doi.org/10.1134/S1070328422100037

    Article  CAS  Google Scholar 

  10. Hochberg, E., Walks, P., and Abbott, E.H., Inorg. Chem., 1974, vol. 13, no. 8, p. 1824. https://doi.org/10.1021/ic50138a008

  11. Cotton, F.A., Murillo, C.A., and Walton, R.A., Multiple Bonds between Metal Atoms, New York: Springer, 2005.

    Book  Google Scholar 

  12. Cavell, J.J., Garner, C.D., Pilcher, G., and Parkes, S., J. Chem. Soc., Dalton Trans., 1979, p. 1714. https://doi.org/10.1039/DT9790001714

  13. Slyusareva, I.V., Kondrat’ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2007, no. 3, p. 138.

  14. Slyusareva, I.V., Kondrat’ev, Yu.V., Kozin, A.O., et al., Vestn. Sankt-Peterbkrgskogo un-ta. Fiz.-khim., 2008, no. 3, p. 64.

  15. Morozova, E.A., Dobrokhotova, Zh.V., and Alikhanyan, A.S., J. Therm. Anal. Calorim., 2017, vol. 130, no. 3, p. 2211. https://doi.org/10.1007/s10973-017-6583-y

  16. White, E., Org. Mass Spectrom., 1978, vol. 13, no. 9, p. 495. https://doi.org/10.1002/oms.121010903

    Article  CAS  Google Scholar 

  17. Matsumoto, K., Kosugi, Y., Yanagisawa, M., et al., Org. Mass Spectrom., 1980, vol. 15, no. 12, p. 606. https://doi.org/10.1002/oms.1210151203

    Article  CAS  Google Scholar 

  18. Hastic, J.W., Zmbov, K.F., and Margrave, J.L., J. Inorg. Nucl. Chem., 1968, vol. 30, no. 3, p. 729.

    Article  Google Scholar 

  19. Asano, M., Kou, T., and Yasue, Y., Non-Cryst. Solids, 1987, vol. 92, no. 2, p. 245. https://doi.org/10.1016/S0022-3093(87)80042-X

    Article  CAS  Google Scholar 

  20. Skudlarski, K., Drowart, J., Exsteen, G., et al., Trans. Faraday Soc., 1967, vol. 63, p. 1146. https://doi.org/10.1039/TF9676301146

    Article  CAS  Google Scholar 

  21. Sidorov, L.N. Mass-spektral’nye termodinamicheskie issledovaniya (Mass Spectral Thermodynamic Studies), Sidorov, L.N., Korobov, M.V., and Zhuravleva, L.V., Eds., Moscow: Mosk. Univ., 1985.

    Google Scholar 

  22. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom P.J., Mallard W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD. https://doi.org/10.18434/T4D303

  23. Lines, D. and Sutcliffe, H., J. Fluorine Chem., 1984, vol. 25, p. 505. https://doi.org/10.1016/S0022-1139(00)81482-7

    Article  CAS  Google Scholar 

  24. LaZerte, J.D., Hals, L.J., Reid, T.S., and Smith, G.H., J. Am. Chem. Soc., 1953, vol. 75, p. 4525. https://doi.org/10.1021/ja01114a040

    Article  CAS  Google Scholar 

  25. Krusic, P.J., Marchione, A.A., and Roe, D.C., J. Fluorine Chem., 2005, vol. 126, p. 1510. https://doi.org/10.1016/j.jfluchem.2005.08.016

    Article  CAS  Google Scholar 

  26. Blake, P.G. and Pritchard, H., J. Chem. Soc. B, 1967, vol. 1, p. 282.

    Article  Google Scholar 

  27. Altarawneh, M., Almatarneh, M.H., and Dlugogorski, B.Z., Chemosphere, 2022, vol. 286, Pt. 2, p. 131685. https://doi.org/10.1016/j.chemosphere.2021.131685

    Article  CAS  PubMed  Google Scholar 

  28. Price, S.J.W. and Sapiano, H.J., Can. J. Chem., 1979, vol. 57, no. 6, p. 685. https://doi.org/10.1139/v79-111

    Article  CAS  Google Scholar 

  29. Andreevskii, D.N. and Antonova, Z.A., J. Appl. Chem. USSR, 1982, vol. 55, no. 3, p. 582.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding

This work was supported by the Russian Science Foundation, project no. 21-13-00086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alikhanyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayumova, D.B., Malkerova, I.P., Yambulatov, D.S. et al. Dimolybdenum Perfluorotetrabenzoate and Silver Perfluorocyclohexanoate: Synthesis, Evaporation, and Thermodynamic Characteristics. Russ J Coord Chem 50, 211–216 (2024). https://doi.org/10.1134/S1070328423601310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423601310

Keywords:

Navigation