Skip to main content
Log in

3D Coordination Polymers with N-Heterocyclic Ga(I) Moieties

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reactions of bimetallic acenaphthene-1,2-diimine complex [(Dpp-bian-GaCr(CO)5]2-[Na(Thf)2]2 (I) (Dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 4,4'-bipyridine (4,4'-Bipy) and 1,3-bis(4-pyridyl)propane (Bpp) in THF gave 3D coordination polymers [{(Dpp-bian)GaCr(CO)5}{Na(4,4'-Bipy)3}]n (II) and [(Dpp-bian)GaCr(CO)4Na(Et2O)(Bpp)1,5]n (III), respectively. Compounds II and III were characterized by elemental analysis and NMR and IR spectroscopy. The molecular structure of II was established by X-ray diffraction (CCDC no. 2278024).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Hadlington, T.J., Driess, M., and Jones, C., Chem. Soc. Rev., 2018, vol. 47, p. 4176.

    Article  CAS  PubMed  Google Scholar 

  2. Chu, T. and Nikonov, G.I., Chem. Rev., 2018, vol. 118, p. 3608.

    Article  CAS  PubMed  Google Scholar 

  3. Zhong, M., Sinhababu, S., and Roesky, H.W., Dalton Trans., 2020, vol. 49, p. 1351.

    Article  CAS  PubMed  Google Scholar 

  4. Hardman, N.J., Eichler, B.E., and Power, Ph.P., Chem. Commun., 2000, no. 20, p. 1991.

  5. Jin, G., Jones, C., Junk, P.C., et al., New J. Chem., 2008, vol. 32, p. 835.

    Article  CAS  Google Scholar 

  6. Overgaard, J., Jones, C., Dange, D., and Platts, J.A., Inorg. Chem., 2011, vol. 50, p. 8418.

    Article  CAS  PubMed  Google Scholar 

  7. Jones, C., Junk, P.C., Platts, J.A., and Stasch, A., J. Am. Chem. Soc., 2006, vol. 128, no. 7, p. 2206.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt, E.S., Jockisch, A., and Schmidbaur, H., J. Am. Chem. Soc., 1999, vol. 121, no. 41, p. 9758.

    Article  CAS  Google Scholar 

  9. Schmidt, E.S., Schier, A., and Schmidbaur, H., Dalton Trans., 2001, no. 5, p. 505.

  10. Baker, R.J., Farley, R.D., Jones, C., et al., Dalton Trans., 2002, no. 20, p. 3844.

  11. Dange, D., Choong, S.L., Schenk, Ch., et al., Dalton Trans., 2012, vol. 41, p. 9304.

    Article  CAS  PubMed  Google Scholar 

  12. Morris, L.J., Rajeshkumar, T., Maron, L., and Okuda, J., Chem.-Eur. J., 2022, vol. 28, no. 56, р. e202201480.

  13. Seifert, A., Scheid, D., Linti, G., and Zessin, T., Chem.-Eur. J., 2009, vol. 15, no. 44, p. 12114.

  14. Jones, C., Mills, D.P., and Rose, R.P., J. Organomet. Chem., 2006, vol. 691, no. 13, p. 3060.

    Article  CAS  Google Scholar 

  15. Kassymbek, A., Britten, J.F., Spasyuk, D., et al., Inorg. Chem., 2019, vol. 58, no. 13, p. 8665.

    Article  CAS  PubMed  Google Scholar 

  16. Kassymbek, A., Vyboishchikov, S.F., Gabidullin, B.M., et al., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, p. 18102.

    Article  CAS  PubMed  Google Scholar 

  17. Baker, R.J., Jones, C., and Platts, J.A., Dalton Trans., 2003, no. 19, p. 3673.

  18. Baker, R.J., Jones, C., and Platts, J.A., J. Am. Chem. Soc., 2003, vol. 125, no. 35, p. 10534.

    Article  CAS  PubMed  Google Scholar 

  19. Aldridge, S., Baker, R.J., Coombs, N.D., et al., Dalton Trans., 2006, no. 27, p. 3313.

  20. Jones, C., Mills, D.P., Rose, R.P., et al., J. Organomet. Chem., 2010, vol. 695, no. 22, p. 2410.

    Article  CAS  Google Scholar 

  21. Fedushkin, I.L., Sokolov, V.G., Piskunov, A.V., et al., Chem. Commun., 2014, vol. 50, p. 10108.

    Article  CAS  Google Scholar 

  22. Fedushkin, I.L., Sokolov, V.G., Makarov, V.M., et al., Russ. Chem. Bull., 2016, vol. 65, no. 6, p. 1495.

    Article  CAS  Google Scholar 

  23. Sokolov, V.G., Skatova, A.A., Piskunov, A.V., et al., Russ. Chem. Bull., 2020, vol. 69, no. 8, p. 1537.

    Article  CAS  Google Scholar 

  24. Dodonov, V.A., Sokolov, V.G., Baranov, E.V., et al., Inorg. Chem., 2022, vol. 61, no. 38, p. 14962.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, R., Wang, Y., Zhao, Y., et al., Dalton Trans., 2021, vol. 50, no. 39, р. 13634.

  26. Koptseva, T.S., Sokolov, V.G., Ketkov, S.Yu., et al., Chem.-Eur. J., 2021, vol. 27, no. 18, p. 5745.

    Article  CAS  PubMed  Google Scholar 

  27. Sokolov, V.G., Koptseva, T.S., Rumyantcev, R.V., et al., Organometallics, 2020, vol. 39, no. 1, p. 66.

    Article  CAS  Google Scholar 

  28. Koptseva, T.S., Bazyakina, N.L., Baranov, E.V., and Fedushkin, I.L., Mendeleev Commun., 2023, vol. 33, p. 167.

    Article  CAS  Google Scholar 

  29. Koptseva, T.S., Moskalev, M.V., Baranov, E.V., and Fedushkin, I.L., Organometallics, 2023, vol. 42, p. 965.

    Article  CAS  Google Scholar 

  30. Koptseva, T.S., Bazyakina, N.L., Moskalev, M.V., et al., Eur. J. Inorg. Chem., 2021, no. 7, p. 675.

  31. Koptseva, T.S., Bazyakina, N.L., Rumyantcev, R.V., and Fedushkin, I.L., Mendeleev Commun., 2022, vol. 32, p. 780.

    Article  Google Scholar 

  32. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.42.76a - Software Package, Rigaku OD, 2022.

  33. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, p. 3.

    Google Scholar 

  34. Sheldrick G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  35. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  36. SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlisPro 1.171.42.76a - Software Package, Rigaku OD, 2022.

  37. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, p. 3576.

    Article  CAS  Google Scholar 

  38. Spek, A.L., Acta Cryst., 2009, vol. 65, p. 148.

    CAS  Google Scholar 

  39. Macrae, C.F., Sovago, I., Cottrell, S.J., et al., J. Appl. Crystallogr., 2020, vol. 53, p. 226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sikma, R.E., Balto, K.P., Figueroa, J.S., and Cohen, S.M., Angew. Chem., Int. Ed. Engl., 2022, vol. 61, р. e202206353.

Download references

ACKNOWLEDGMENTS

This study was performed using research equipment of the Center for Collective Use “Analytical Center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences,” supported by the grant “Provision of the Development of Material and Technical Infrastructure of Centers for Collective Use of Research Equipment” (RF–2296.61321X0017, agreement number 075-15-2021-670).

Funding

This study was supported by the Russian Science Foundation (project no. 19-13-00336-Π).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Fedushkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptseva, T.S., Baranov, E.V. & Fedushkin, I.L. 3D Coordination Polymers with N-Heterocyclic Ga(I) Moieties. Russ J Coord Chem 50, 85–95 (2024). https://doi.org/10.1134/S1070328423601127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423601127

Keywords:

Navigation