Skip to main content
Log in

Reactions of Carbon Dioxide Bound to Aluminum Diimine Hydride with Borane Dimethyl Sulfide and Ammonia

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of aluminum bis-formate acenaphthene-1,2-diimine complex [(ArBIG-bian)Al(μ-OC(H)O)2Li(Thf)2] (I) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene), prepared by binding carbon dioxide by aluminum diimine hydride [(ArBIG-bian)Al(H)2][Li(Thf)4]+, with borane dimethyl sulfide and ammonia was studied. The reaction of I with BH3∙SMe2 (1 : 1) in toluene affords the product of hydroboration of one formate group [(ArBIG-bian)Al(μ-OC(H)O)(OB(H)OCH3)Li(Thf)]2 (II), while the reaction of I with BH3∙SMe2 (1 : 2) is accompanied by reduction of both formate groups and gives complex [(ArBIG-bian)Al(OBOCH3)2OLi2(Thf)2BH4]2 (III), methoxyboroxine (CH3OBO)3 and, presumably, compound [(ArBIG-bian)AlOCH3]. The reaction of I with one equivalent of ammonia in THF gives adduct [(ArBIG-bian)Al(NH3)(μ-OC(H)O)2Li(Thf)2] (IV), in which ammonia is coordinated to the aluminum atom, while the key bonds in I have not undergone ammonolysis. Compounds IIIV were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction (CCDC no. 2255017 (II), 2255018 (III), 2255019 (IV)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Lamb, W.F., Wiedmann, T., Pongratz, J., et al., Environ. Res. Lett., 2021, vol. 16, p. 073005.

    Article  CAS  Google Scholar 

  2. Liu, Q., Wu, L., Jackstell, R., et al., Nat. Commun., 2015, vol. 6, p. 5933.

    Article  PubMed  Google Scholar 

  3. Wang, W.-H., Himeda, Y., Muckerman, J.T., et al., Chem. Rev., 2015, vol. 115, no. 23, p. 12936.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, W.-H., Feng, X., and Bao, M., Transformation of Carbon Dioxide to Formic Acid and Methanol, Springer Briefs in Molecular Science, Springer Nature, Switzerland AG, 2018.

    Book  Google Scholar 

  5. Ye, R.-P., Ding, J., Gong, W., et al., Nat. Commun., 2019, vol. 10, p. 5698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Y., Zhang, T., and Das, S., Green Chem., 2020, vol. 22, p. 1800.

    Article  CAS  Google Scholar 

  7. Ren, M., Zhang, Y., Wang, X., et al., Catalysts, 2022, vol. 12, p. 403.

    Article  CAS  Google Scholar 

  8. Navarro, M., Sánchez-Barba, L.F., Garcés, A., et al., Catal. Sci. Technol., 2020, vol. 10, p. 3265.

    Article  CAS  Google Scholar 

  9. Laiwattanapaisarn, N., Virachotikul, A., and Phomphrai, K., Dalton Trans., 2021, vol. 50, p. 11039.

    Article  CAS  PubMed  Google Scholar 

  10. Yepes, Y.R., Mesías-Salazar, Á., Becerra, A., et al., Organometallics, 2021, vol. 40, p. 2859.

    Article  Google Scholar 

  11. Saltarini, S., Villegas-Escobar, N., Martínez, J., et al., Inorg. Chem., 2021, vol. 60, p. 1172.

    Article  CAS  PubMed  Google Scholar 

  12. Rauch, M. and Parkin, G., J. Am. Chem. Soc., 2017, vol. 139, p. 18162.

    Article  CAS  PubMed  Google Scholar 

  13. Rauch, M., Strater, Z., and Parkin, G., J. Am. Chem. Soc., 2019, vol. 141, p. 17754.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, W., Roisnel, T., Dorcet, V., et al., Organometallics, 2020, vol. 39, p. 698.

    Article  CAS  Google Scholar 

  15. Caise, A., Hicks, J., Fuentes, M.A., et al., Chem.-Eur. J., 2021, vol. 27, p. 2138.

    Article  CAS  PubMed  Google Scholar 

  16. Anker, M.D., Arrowsmith, M., Bellham, P., et al., Chem. Sci., 2014, vol. 5, p. 2826.

    Article  CAS  Google Scholar 

  17. Yan, B., Dutta, S., Ma, X., et al., Dalton Trans., 2022, vol. 51, p. 6756.

    Article  CAS  PubMed  Google Scholar 

  18. Abdalla, J.A.B., Riddlestone, I.M., Tirfoin, R., et al., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, p. 5098.

    Article  CAS  PubMed  Google Scholar 

  19. Franz, D., Jandl, C., Stark, C., et al., ChemCatChem, 2019, vol. 11, p. 5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chia, C.-C., Teo, Y.-C., Cham, N., et al., Inorg. Chem., 2021, vol. 60, p. 4569.

    Article  CAS  PubMed  Google Scholar 

  21. Caise, A., Jones, D., Kolychev, E.L., et al., Chem.-Eur. J., 2018, vol. 24, p. 13624.

    Article  CAS  PubMed  Google Scholar 

  22. Sokolov, V.G., Koptseva, T.S., Moskalev, M.V., et al., Russ. Chem. Bull., 2017, vol. 66, no. 9, p. 1569. https://doi.org/10.1007/s11172-017-1926-1

    Article  CAS  Google Scholar 

  23. Moskalev, M.V., Razborov, D.A., Bazanov, A.A., et al., Mendeleev Commun., 2020, vol. 30, p. 94.

    Article  CAS  Google Scholar 

  24. Koptseva, T.S., Moskalev, M.V., Skatova, A.A., et al., Inorg. Chem., 2022, vol. 61, p. 206.

    Article  CAS  PubMed  Google Scholar 

  25. Moskalev, M.V., Sokolov, V.G., Koptseva, T.S., et al., J. Organomet. Chem., 2021, vol. 949, p. 121972.

    Article  CAS  Google Scholar 

  26. Koptseva, T.S., Moskalev, M.V., Skatova, A.A., et al., Russ. Chem. Bull., 2022, vol. 71, no. 8, p. 1626. https://doi.org/10.1007/s11172-022-3571-6

    Article  CAS  Google Scholar 

  27. Koptseva, T.S., Skatova, A.A., Ketkov, S.Y., et al., Organometallics, 2023, vol. 42, p. 123.

    Article  CAS  Google Scholar 

  28. Guzmán, J., Torguet, A., García-Orduña, P., et al., J. Organomet. Chem., 2019, vol. 897, p. 50.

    Article  Google Scholar 

  29. Li, Z., Yu, Z., Luo, X., et al., RSC Adv., 2020, vol. 10, p. 33972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin, S., Liu, J., and Ma, L., J. CO2 Util., 2021, vol. 54, p. 101759.

  31. Zhai, G., Liu, Q., Ji, J., et al., J. CO2 Util., 2022, vol. 61, p. 102052.

  32. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2, Madison: Bruker AXS Inc., 2018.

  33. SAINT. Data Reduction and Correction Program. Version 8.38A, Madison: Bruker AXS Inc., 2017.

  34. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  36. Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.

    Google Scholar 

  37. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  38. Sheldrick, G.M., SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS, 2016.

    Google Scholar 

  39. Leong, B.-X., Lee, J., Li, Y., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 17629.

    Article  CAS  PubMed  Google Scholar 

  40. Saxena, P. and Thirupathi, N., Polyhedron, 2015, vol. 98, p. 238.

    Article  CAS  Google Scholar 

  41. Lago, A.B., Carballo, R., Lezama, L., et al., J. Solid State Chem., 2015, vol. 231, p. 145.

    Article  CAS  Google Scholar 

  42. Yang, L., Powell, D.R., and Houser, R.P., Dalton Trans., 2007, p. 955.

  43. Ruiz, J.C.G., Nöth, H., and Warchhold, M., Eur. J. Inorg. Chem., 2008, p. 251.

  44. Yang, Z., Ma, X., Oswald, R.B., et al., J. Am. Chem. Soc., 2006, vol. 128, p. 12406.

    Article  CAS  PubMed  Google Scholar 

  45. Ma, X., Yang, Z., Wang, X., et al., Inorg. Chem., 2011, vol. 50, p. 2010.

    Article  CAS  PubMed  Google Scholar 

  46. Ma, X., Zhong, M., Liu, Z., et al., Z. Kristallogr. NCS, 2012, vol. 227, p. 580.

    CAS  Google Scholar 

  47. Yang, Z., Hao, P., Liu, Z., et al., J. Organomet. Chem., 2014, vol. 751, p. 788.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation no. 20-13-00052 (https://rscf.ru/project/20-13-00052/) and performed using research equipment of the Center for Collective Use “Analytical Center of the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences” supported by the grant “Provision of the Development of Material and Technical Infrastructure of Centers for Collective Use of Research Equipment” (unique identifier RF–2296.61321X0017, agreement number 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skatova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalev, M.V., Skatova, A.A., Bazanov, A.A. et al. Reactions of Carbon Dioxide Bound to Aluminum Diimine Hydride with Borane Dimethyl Sulfide and Ammonia. Russ J Coord Chem 50, 118–129 (2024). https://doi.org/10.1134/S1070328423600936

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600936

Keywords:

Navigation