Skip to main content
Log in

Heteroleptic Metal-Organic Frameworks of Lanthanides (Lа, Ce, and Ho) Based on Ligands of the Anilate Type and Dicarboxylic Acids

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

New heteroleptic metal-organic frameworks of lanthanides, units of which contain anionic organic ligands of two types, are prepared by the solvothermal synthesis in N,N-dimethylformamide (DMF). The cross-linked coordination polymer [Ho2(CA)2(Bdc)·4DMF] (I) and two scaffold derivatives [La2(pQ)2(Bpdc)·4DMF] (II) and [Ce2(CA)(Bdc)2·4DMF]·2DMF (III·2DMF), where CA is chloranilic acid dianion, pQ is 2,5-dihydroxy-3,6-di-tert-butyl-para-benzoquinone dianion, Bdc is terephthalic acid dianion, and Bpdc is 4,4'-biphenyldicarboxylic acid dianion, are synthesized. The structures of compounds I, II, and III·2DMF are studied by X-ray diffraction (XRD) (CIF file CCDC nos. 2212230, 2212231, and 2212232, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Kovalenko, K.A., Potapov, A.S., and Fedin, V.P., Russ. Chem. Rev., 2022, vol. 91, p. 5026. https://doi.org/10.1070/RCR5026

    Article  Google Scholar 

  2. Agafonov, M.A., Aleksandrov, E.V., Artyukhova, N.A., et al., Russ. J. Struct. Chem., 2022, vol. 63, no. 5, p. 671.

    Article  CAS  Google Scholar 

  3. Monni, N., Oggianu, M., Sahadevan, S.A., et al., Magnetochemistry, 2021, vol. 7, p. 109.

    Article  CAS  Google Scholar 

  4. Benmansour, S. and Gómez-García, C.J., Magnetochemistry, 2020, vol. 6, p. 71.

    Article  CAS  Google Scholar 

  5. Liu, K.-G., Sharifzadeh, Z., Rouhani, F., et al., Coord. Chem. Rev., 2021, vol. 436, p. 213827.

    Article  CAS  Google Scholar 

  6. Wang, C. and Liao, K., ACS Appl. Mater. Interfaces, 2021, vol. 13, p. 56752.

    Article  CAS  PubMed  Google Scholar 

  7. Fasna, F. and Sasi, S., ChemSelect, 2021, vol. 6, p. 6365.

    Google Scholar 

  8. Antipin, I.S., Burilov, V.A., Gorbatchuk, V.V., et al., Russ. Chem. Rev., 2021, vol. 90, p. 895. https://doi.org/10.1070/RCR5011

    Article  Google Scholar 

  9. Kitagawa, S. and Matsuda, R., Coord. Chem. Rev., 2007, vol. 251, p. 2490.

    Article  CAS  Google Scholar 

  10. Kingsbury, C.J., Abrahams, B.F., Auckett, J.E., et al., Chem.-Eur. J., 2019, vol. 25, p. 5222.

    Article  CAS  PubMed  Google Scholar 

  11. Abrahams, B.F., Dharma, A.D., Dyett, B., et al., Dalton Trans., 2016, vol. 45, p. 1339.

    Article  CAS  PubMed  Google Scholar 

  12. Adil, K., Belmabkhout, Y., Pillai, R.S., et al., Chem. Soc. Rev., 2017, vol. 46, p. 3402.

    Article  CAS  PubMed  Google Scholar 

  13. Ezugwu, C.I., Liu, S., Li, C., et al., Coord. Chem. Rev., 2021, vol. 450, p. 214245.

    Article  Google Scholar 

  14. Hu, Z. and Zhao, D., CrystEngComm, 2017, vol. 19, p. 4066.

    Article  CAS  Google Scholar 

  15. Huangfu, M., Wang, M., Lin, C., et al., Dalton Trans., 2021, vol. 50, p. 3429.

    Article  CAS  PubMed  Google Scholar 

  16. Li, P., Zhou, Z., Zhao, Y.S., et al., Chem. Commun., 2021, vol. 57, p. 13678.

    Article  CAS  Google Scholar 

  17. Wang, Y., Liu, X., Li, X., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 8030.

    Article  CAS  PubMed  Google Scholar 

  18. Chang, C.-H., Li, A.-C., Popovs, I., et al., J. Mater. Chem. A, 2019, vol. 7, p. 23770.

    Article  CAS  Google Scholar 

  19. Calbo, J., Golomb, M.J., and Walsh, A., J. Mater. Chem. A, 2019, vol. 7, p. 16571.

    Article  CAS  Google Scholar 

  20. Wang, M., Dong, R., and Feng, X., Chem. Soc. Rev., 2021, vol. 50, p. 2764.

    Article  CAS  PubMed  Google Scholar 

  21. Dong, R. and Feng, X., Nat. Mater., 2021, vol. 20, p. 122.

    Article  PubMed  Google Scholar 

  22. Benmansour, S. and Gómez-García, C.J., Gen. Chem., 2020, vol. 6, p. 190033.

    Article  Google Scholar 

  23. Espallargas, G.M. and Coronado, E., Chem. Soc. Rev., 2018, vol. 47, p. 533.

    Article  Google Scholar 

  24. Sahadevan, S.A., Manna, F., Abhervé, A., et al., Inorg. Chem., 2021, vol. 60, p. 17765.

    Article  Google Scholar 

  25. Trofimova, O., Maleeva, A.V., Ershova, I.V., et al., Molecules, 2021, vol. 26, p. 2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sahadevan, S.A., Monni, N., Oggianu, M., et al., ACS Appl. Nano Mater., 2020, vol. 3, p. 94.

    Article  Google Scholar 

  27. Lysova, A.A., Kovalenko, K.A., Dybtsev, D.N., et al., Microporous Mesoporous Mater., 2021, vol. 328, p. 111477.

    Article  CAS  Google Scholar 

  28. Lysova, A.A., Samsonenko, D.G., Kovalenko, K.A., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 20561.

    Article  CAS  PubMed  Google Scholar 

  29. Lysova, A.A., Samsonenko, D.G., Dorovatovskii, P.V., et al., J. Am. Chem. Soc., 2019, vol. 141, p. 17260.

    Article  CAS  PubMed  Google Scholar 

  30. Trofimova, O.Y., Maleeva, A.V., Arsenyeva, K.V., et al., Crystals, 2022, vol. 12, p. 370.

    Article  CAS  Google Scholar 

  31. Trofimova, O.Y., Ershova, I.V., Maleeva, A.V., et al., Russ. J. Coord. Chem., 2021, vol. 47, p. 610. https://doi.org/10.1134/S1070328421090086

    Article  CAS  Google Scholar 

  32. Kharitonov, A.D., Trofimova, O.Y., Meshcheryakova, I.N., et al., CrystEngComm, 2020, vol. 22, p. 4675.

    Article  CAS  Google Scholar 

  33. Khamaletdinova, N.M., Meshcheryakova, I.N., Piskunov, A.V., et al., J. Struct. Chem., 2015, vol. 56, p. 233. https://doi.org/10.1134/S0022476615020055

    Article  CAS  Google Scholar 

  34. APEX3, Madison: Bruker AXS Inc., 2018.

  35. Rigaku Oxford Diffraction. CrysAlisPro Software System. Version 1.171.38.46, Wroclaw: Rigaku Corporation, 2015.

  36. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., et al., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  38. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, p. 3.

    Google Scholar 

  39. Benmansour, S., Gómez-García, C.J., and Hernández-Paredes, A., Crystals, 2022, vol. 12, p. 261.

    Article  CAS  Google Scholar 

  40. Benmansour, S., López-Martínez, G., Canet-Ferrer, J., et al., Magnetochemistry, 2016, vol. 2, p. 32.

    Article  Google Scholar 

  41. Dubraja, L.A., Molcanov, K., Zilic, D., et al., New J. Chem., 2017, vol. 41, p. 6785.

    Article  Google Scholar 

  42. Vuković, V., Molčanov, K.I., Jelsch, C., et al., Cryst. Growth Des., 2019, vol. 19, p. 2802.

    Article  Google Scholar 

  43. Cao, H.-Y., Liu, Q.-Y., Gao, M.-J., et al., Inorg. Chim. Acta, 2014, vol. 414, p. 226.

    Article  CAS  Google Scholar 

  44. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Cryst. Growth Des., 2014, vol. 14, p. 3576.

    Article  CAS  Google Scholar 

  45. Alexandrov, E.V., Blatov, V.A., Kochetkov, A.V., et al., CrystEngComm, 2011, vol. 13, p. 3947.

    Article  CAS  Google Scholar 

  46. Aleksandrov, E.V., Shevchenko, A.P., Nekraso-va, N.A., et al., Russ. Chem. Rev., 2022, vol. 91, p. 5032. https://doi.org/10.1070/RCR5032

    Article  Google Scholar 

  47. Alvarez, S., Alemany, P., Casanova, D., et al., Coord. Chem. Rev., 2005, vol. 249, p. 1693.

    Article  CAS  Google Scholar 

  48. Llunell, M., Casanova, D., Cirera, J., et al., Universitat de Barcelona, 2013.

    Google Scholar 

  49. Ruiz-Martinez, A., Casanova, D., and Alvarez, S., Chem.-Eur. J., 2008, vol. 14, p. 1291.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use “Analytical Center of Institute of Organometallic Chemistry of Russian Academy of Sciences” and supported by the project “Provision of Development of Material Technical Infrastructure of Centers for Collective Use of Scientific Equipment” (unique identifier RF–2296.61321X0017, agreement no. 075-15-2021-670).

Funding

This work was supported by the Russian Science Foundation, project no. 22-23-00750.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Piskunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimova, O.Y., Maleeva, A.V., Arsen’eva, K.V. et al. Heteroleptic Metal-Organic Frameworks of Lanthanides (Lа, Ce, and Ho) Based on Ligands of the Anilate Type and Dicarboxylic Acids. Russ J Coord Chem 49, 276–285 (2023). https://doi.org/10.1134/S1070328423600183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600183

Keywords:

Navigation