Skip to main content
Log in

Electronic Structures and Photo-Induced Geometry Distortion of Dinuclear Platinum(II) Complexes Featuring Janus-Type N-Heterocyclic Carbenes: A Theoretical Study

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A series of neutral and anionic platinum(II) complexes bearing Janus-type N-Heterocyclic carbenes (NHC) with different extents of π conjugation were constructed theoretically by bridging two cyclometallated platinum(II) centers using diNHC linkers. The diNHCs bind to Pt(II) in either in monodentate (neutral complex I, II) or bidentate (anionic complex IIIV) fashion. Structures of all complexes were first optimized. Single point and TD-DFT calculations have been carried out using the gas-phased optimized geometries to gain insight into their electronic structures, possible electronic transitions, and to probe the influence of diNHC ligand design on the photo-responsiveness of the complexes. The response of complexes IIII is limited to UV light; however, complexes IV and V, which contain cyclometallated diNHCs, exhibit absorption bands in the visible region. Additionally, the emissive triplet excited state and the metal-center triplet excited states (3MC) were also investigated. Interestingly, the results suggest that the internal conversion triplet excited state to 3MC in I and III, which induces significant coordination geometry distortion, is energetically favorable for complexes I and III suggesting potentially photo-enhanced reactivities of these two complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Miskowski, V.M., Houlding, V.H., Che, C.M., and Wang, Y., Inorg. Chem., 1993, vol. 32, p. 2518. https://doi.org/10.1021/ic00063a052

    Article  CAS  Google Scholar 

  2. Chan, A.K.W. and Yam, V.W.W., Acc. Chem. Res., 2018, vol. 51, p. 3041. https://doi.org/10.1021/acs.accounts.8b00339

    Article  CAS  PubMed  Google Scholar 

  3. Vu, A.T., Santos, D.A., Hale, J.G., and Garner, R.N., Inorg. Chim. Acta, 2016, vol. 450, p. 23. https://doi.org/10.1016/j.ica.2016.05.007

    Article  CAS  Google Scholar 

  4. Martínez-Agramunt, V., Ruiz-Botella, S., and Peris, E., Chem. Eur. J., 2017, vol. 23, p. 6675. https://doi.org/10.1002/chem.201700703

    Article  CAS  PubMed  Google Scholar 

  5. Horiuchi, S., Moon, S., Ito, A., et al., Angew. Chem. Int. Ed., 2021, vol. 60, p. 10654. https://doi.org/10.1002/anie.202101460

    Article  CAS  Google Scholar 

  6. Loftus, L.M., Rack, J.J., and Turro, C., Chem. Commun., 2020, vol. 56, p. 4070. https://doi.org/10.1039/C9CC10095D

    Article  CAS  Google Scholar 

  7. Betanzos-Lara, S., Salassa, L., Habtemariam, A., et al., Organometallics, 2012, vol. 31, p. 3466. https://doi.org/10.1021/om201177y

    Article  CAS  Google Scholar 

  8. Nisbett, K., Tu, Y.J., Turro, C., et al., Inorg. Chem., 2018, vol. 57, p. 231. https://doi.org/10.1021/acs.inorgchem.7b02398

  9. Vu, A.T., Santos, D.A., Hale, J.G., and Garner, R.N., Inorg. Chim. Acta., 2016, vol. 450, p. 23. https://doi.org/10.1016/j.ica.2016.05.007

    Article  CAS  Google Scholar 

  10. Morales, K., Samper, K.G., Pena, Q., et al., Inorg. Chem., 2018, vol. 57, p. 15517. https://doi.org/10.1021/acs.inorgchem.8b02854

    Article  CAS  PubMed  Google Scholar 

  11. Monro, S., Colon, K.L., Yin, H., et al., Chem. Rev., 2019, vol. 119, p. 797. https://doi.org/10.1021/acs.chemrev.8b00211

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, Y., Roberts, G.M., Greenough, S.E., et al., Angew. Chem. Int. Ed., 2012, vol. 51, p. 11263. https://doi.org/10.1002/anie.201206283

    Article  CAS  Google Scholar 

  13. Kasparkova, J., Kostrhunova, H., Novakova, O., et al., Angew. Chem. Int. Ed., 2015, vol. 54, p. 14478. https://doi.org/10.1002/anie.201506533

    Article  CAS  Google Scholar 

  14. Shi, H., Imberti, C., and Sadler, P.J., Inorg. Chem. Front., 2019, vol. 6, p. 1623. https://doi.org/10.1039/C9QI00288J

    Article  CAS  Google Scholar 

  15. Bellotti, P., Koy, M., Hopkinson, M.N., and Glorius, F., Nat. Rev. Chem., 2021, vol. 5, p. 711. https://doi.org/10.1038/s41570-021-00321-1

    Article  CAS  PubMed  Google Scholar 

  16. Marion, M. and Nolan, S.P., Acc. Chem. Res., 2008, vol. 41, p. 1440. https://doi.org/10.1021/ar800020y

    Article  CAS  PubMed  Google Scholar 

  17. Strassner, T., Acc. Chem. Res., 2016, vol. 49, p. 2680. https://doi.org/10.1021/acs.accounts.6b00240

    Article  CAS  PubMed  Google Scholar 

  18. Sun, R.W.Y., Chow, A.L.F., Li, X.H., et al., Chem. Sci., 2011, vol. 2, p. 728. https://doi.org/10.1039/C0SC00593B

    Article  CAS  Google Scholar 

  19. Vishkaee, T.S., Fazaeli, R., and Yousefi, M., Russ. J. Inorg. Chem., 2019, vol. 64, p. 237. https://doi.org/10.1134/S0036023619020062

    Article  CAS  Google Scholar 

  20. Narayana, B.K., Keri, R.S., Hanumantharayudu, N.D., and Budagumpi, S., Eur. J. Inorg. Chem., 2021, vol. 2021, p. 4349. https://doi.org/10.1002/ejic.202100258

    Article  CAS  Google Scholar 

  21. Poyatos, M. and Peris, E., Dalton Trans. 2021, vol. 50, p. 12748. https://doi.org/10.1039/D1DT02035H

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen, V.H., El Ali, B.M., and Huynh, H.V., Organometallics, 2018, vol. 37, p. 2358. https://doi.org/10.1021/acs.organomet.8b00347

    Article  CAS  Google Scholar 

  23. Nayak, S. and Gaonkar, S.L., ChemMedChem, 2021, vol. 16, p. 1360. https://doi.org/10.1002/cmdc.202000836

    Article  CAS  PubMed  Google Scholar 

  24. Guarra, F., Pratesi, A., Gabbiani, C., and Biver, T., J. Inorg. Biochem., 2021, vol. 217, p. 111355. https://doi.org/10.1016/j.jinorgbio.2021.111355

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, S., Yang, Z., Jiang, G., et al., Coord. Chem. Rev., 2021, vol. 449, p. 214217. https://doi.org/10.1016/j.ccr.2021.214217

    Article  CAS  Google Scholar 

  26. Visbal, R. and Gimeno, M.C., Chem. Soc. Rev., 2014, vol. 43, p. 3551. https://doi.org/10.1039/C3CS60466G

    Article  CAS  PubMed  Google Scholar 

  27. Chung, L.H., Lo, H.S., Ng, S.W., et al., Sci. Rep., 2015, vol. 5, p. 15394. https://doi.org/10.1038/srep15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang, C.F., Cheng, Y.M., Chi, Y., et al., Angew. Chem. Int. Ed., 2008, vol. 47, p. 4542. https://doi.org/10.1002/anie.200800748

    Article  CAS  Google Scholar 

  29. Hemmert, C. and Gornitzka, H., Dalton Trans., 2015, vol. 45, p. 440. https://doi.org/10.1039/C5DT03904E

    Article  CAS  Google Scholar 

  30. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  31. Perdew, J.P., Chevary, J.A., Vosko, S.H., et al., Phys. Rev. B., 1992, vol. 46, p. 6671. https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  32. Perdew, J.P., Phys. Rev., 1986, vol. 33, p. 8822. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  33. Andrae, D., Häußermann, U., Dolg, M., et al., Theoret. Chim. Acta., 1991, vol. 78, p. 247. https://doi.org/10.1007/BF01114537

    Article  CAS  Google Scholar 

  34. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 299. https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  35. Krishnan, V., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  36. Luo, Y., Chen, Z., Hu, J., et al., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 2764. https://doi.org/10.1039/C8CP06804F

    Article  CAS  PubMed  Google Scholar 

  37. Lam, W.H., Lam, E.S.H., and Yam, V.W.W., J. Am. Chem. Soc., 2013, vol. 135, p. 15135. https://doi.org/10.1021/ja406810a

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa, T., Sameera, W.M.C., Saito, D., et al., Inorg. Chem., 2018, vol. 57, p. 14086. https://doi.org/10.1021/acs.inorgchem.8b01654

    Article  CAS  PubMed  Google Scholar 

  39. Newman, C.P., Deeth, R.J., Clarkson, G.J., and Rourke, J.P., Organometallics, 2007, vol. 26, p. 6225. https://doi.org/10.1021/om700671y

    Article  CAS  Google Scholar 

  40. Exstrom, C.L., Pomije, M.K., and Mann, K.R., Chem. Mater., 1998, vol. 10, p. 942. https://doi.org/10.1021/cm970788t

    Article  CAS  Google Scholar 

  41. Fan, H.W., Bai, F.Q., Zhang, Z.X., et al., RSC Adv., 2017, vol. 7, p. 17368. https://doi.org/10.1039/C7RA00705A

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.20.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Ha.

Ethics declarations

The author of this work declares that they has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canh, K., Hien, P.T., Huyen, N.T. et al. Electronic Structures and Photo-Induced Geometry Distortion of Dinuclear Platinum(II) Complexes Featuring Janus-Type N-Heterocyclic Carbenes: A Theoretical Study. Russ J Coord Chem 49, 753–764 (2023). https://doi.org/10.1134/S1070328423600043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600043

Keywords:

Navigation