Abstract
Thiosemicarbazone complexes possess structural diversity and variable bonding patterns and potential biological implications and ion sensing abilities. The ability of the transition metals to acquire different geometries like octahedral, square planar and tetrahedral in different coordination environments has encouraged researchers to explore the coordination chemistry of thiosemicarbazone complexes which can also vary upon changing aldehydes and ketones, substituents attached to the carbonyl moiety, metal and its oxidation state, geometries, counter ions, presence of a solvent or additional molecules in the structures and substituents on the S or N(4)-atoms. This review aims to summarize recent developments in the synthesis and medicinal importance of thiosemicarbazone ligands and particular emphasis on their metal complexes. The mixed ligand-metal complexes have an important role to play in biological systems because a number of ligands try to combine with the same metal ions in vivo. Different ligands have different biological activities producing synergetic results and enhancing the potency of the formed complex. They also have a role to play in the storage and transport of substances, therefore the review article also covers the mixed ligand complexes of thiosemicarbazones with hetero ligands like 1,10-phenanthroline, pyridine, triphenyl phosphine etc. and their mechanistic action and medicinal benefits in recent years. The binuclear complexes of thiosemicarbazones with two different and same metal ions have also been explored here. Dinuclear complexes have been shown to possess interesting structures and in most cases, such complexes containing metal–metal bond also affects the complex’s magnetic properties as well. It has been well discussed in the course of this study that metal complexes show enhanced biological activity than the free ligand or metal ion. The studies cited in the review have been sourced from publications indexed in known databases. Some of the recently explored structural alterations have been discussed in the paper and future substituted thiosemicarbazones and their complexes may emerge as multi-target inhibitors.
This is a preview of subscription content, access via your institution.
REFERENCES
Kola, I. and Landis, J., Nature Rev. Drug Dis., 2004, vol. 3, p. 711.
Pelosi, G., The Open Crystallography J., 2010, vol. 3, p. 16.
Sartorelli, A.C. and Booth, B.A., Cancer Res., 1967, vol. 27, p. 1614.
Nutting, C.M., van Herpen, C.M.L., and Miah, A.B., Annals Oncol., 2009, vol. 20, no. 7, p. 1275.
Ma, B., Goh, B.C., Tan, E.H., et al., Investigational New Drugs, 2008, vol. 26, no. 2, p. 169.
Kasuga, N.C., Sekino, K., Ishikawa, M., et al., J. Inorg. Biochem., 2003, vol. 96, nos. 2−3, p. 298.
Brockman, R.W., Thomson, J.R., Bell, M.J., et al., Cancer Res., 1956, vol. 16, p. 167.
French, F.A. and Blanz, E.J.J., Cancer Res., 1965, vol. 25, no. 9, p. 1454.
Ferrari, M.B., Bisceglie, F., Pelosi, G., et al., Inorg. Biochem., 2004, vol. 98, p. 301.
Quiroga, A.G. and Ranninger, C.N., Coord. Chem. Rev., 2004, vol. 248, p. 119.
Dilworth, J.R. and Hueting, R., Inorg. Chim. Acta, 2012, vol. 389, p. 3.
Valdes-Martinez, J., Toscano, R.A., Salcedo, R., et al., Monatsh. Chem., 1990, vol. 121, p. 641.
Beiles, R.H. and Calvin, M., J. Am. Chem. Soc., 1947, vol. 69, no. 8, p. 1886.
Al-Jeboori., M. and Dawood, A.H., J. Kerbala Univ., 2008, vol. 6, p. 133.
Chandra, S., Sangeetika, C., and Rathi, A., J. Saudi Chem. Soc., 2001, vol. 5, p. 175.
Sahin, M., Bal-Demirci, T., Pozan-Soylu, G., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 2407.
John, R.P., Sreekanth, A., Rajakannan, V., et al., Polyhedron, 2004, vol. 23, p. 2549.
Ejidike, I.P. and Ajibade, P.A., Rev. Inorg. Chem., 2015, vol. 35, no. 4, p. 191.
Lobana, T.S., Sharma, R., Bawa, G., et al., Coord. Chem. Rev., 2009, vol. 253, nos. 7−8, p. 977.
Chikate, R.C. and Padhye, S.B., Spectrochim. Acta, Part A, 2007, vol. 66, nos. 4–5, p. 1091.
Cowley, A.R., Dilworth, J.R., Donnelly, P.S., et al., Dalton Trans., 2003, vol. 4, p. 748.
Kovala-Demertzi, D., Yadav, P.N., Wiecek, J., et al., J. Inorg. Biochem., 2006, vol. 100, no. 9, p. 1558.
Philip, V., Suni, V., Kurup, M., et al., Polyhedron, 2005, vol. 24, no. 10, p. 1133.
Kowol, C., Reisner, E., Chiorescu, I., et al., Inorg. Chem., 2008, vol. 47, no. 23, p. 11032.
Hanahan, D. and Weinberg, R.A., Cell, 2000, vol. 100, no. 1, p. 57.
Hodgson, S., J. Zhejiang Univ. Sci., B., 2008, vol. 9, no. 1, p. 1.
Corrie, P.G. and Pippa, G., Medicine, 2008, vol. 36, no. 1, p. 24.
Sathisha, M.P., Budagumpi, S., Kulkarni, N.V., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 1, p. 106.
Jakupec, M.A., Galanski, M., Arion, V.B., et al., Dalton Trans., 2008, p. 183.
Sharma, B. and Kothari, R., Int. J. Pharma Bio. Sci., 2015, vol. 6, no. 1, p. 1154.
Manikandan, R., Vijayan, P., Anitha, P., et al., Inorg. Chim. Acta, 2014, vol. 421, p. 80.
Palanimuthu, D., Shinde, S.V., Somasundaram, K., et al., J. Med. Chem., 2013, vol. 56, no. 3, p. 722.
Naidu, P.V.S. and Prakash, M.S.K., Int. J. Pharma Med. Bio Sci., 2012, vol. 1, no. 2, p. 55.
Enyedy, E.A., Nagy, N.V., Zsigo, E., et al., Eur. J. Inorg. Chem., 2010, vol. 11, p. 1717.
Shao, J., Zhou, B., Di Bilio, A.J., et al., Mol. Cancer Ther., 2006, vol. 5, no. 3, p. 586.
Hall, I.H., Lackey, C.B., Kistler, T.D., et al., Pharmazie, 2000, vol. 55, no. 12, p. 937.
Ludwig, J.A., Szakacs, G., Martin, S.E., et al., Cancer Res., 2006, vol. 66, no. 9, p. 4808.
Beraldo, H.O. and Gambino, D., Mini Rev. Med. Chem., 2004, vol. 4, p. 31.
Kalinowski, D.S. and Richardson, D.R., Pharmacol. Rev., 2005, vol. 57, no. 4, p. 547.
Nitiss, J.L. Nature Rev. Cancer, 2009, vol. 9, p. 327.
Chen, J., Huang, Y.W., Liu, G., et al., Toxicol. Appl. Pharmacol., 2004, vol. 197, p. 40.
Zeglis, B.M., Divilov, V., and Lewis, J.S., J. Med. Chem., 2011, vol. 54, no. 7, p. 2391.
McGill, B., Snyder, H.M., Probasco, M., et al., Abstracts of Papers, 247th ACS National Meeting and Exposition, Dallas, USA, 2014.
Gómez-Saiz, P., Gil-García, R., Maestro, M.A., et al., J. Inorg. Biochem., 2008, vol. 102, no. 10, p. 1910.
Chen, J.S.K., Agarwal, N., and Mehta, K., Breast Cancer Res. Treatment, 2002, vol. 71, no. 3, p. 237.
Padhye, S., Afrasiabi, Z., Sinn, E., et al., Inorg. Chem., 2005, vol. 44, no. 5, p. 1154.
Szakа́cs G., Annereau, J.-P. Lababidi, S., et al., Cancer Cell, 2004, vol. 6, no. 2, p. 129.
Ludwig, J.A., Gergely, S., Martin, S.E., et al., Cancer Res., 2006, vol. 66, no. 9, p. 4808.
Bai, J., Wang, R-H., Qiao, Y., et al., Drug Des. Dev. Ther., 2017, vol. 11, p. 2227.
Balabanova, Y., Gilsdorf, A., Buda, S., et al., PLoS One, 2011, vol. 6, p. e25691.
Dhumwad, S.D., Gudasi, K.B., and Gudar, T.R., Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal. Chem., 1994, vol. 33, p. 320.
Demertzi, D.K., Demertzi, M.A., and Filiou, E., Biometals, 2003, vol. 16, no. 3, p. 411.
Chandra, S. and Kumar, A., Spectrochimica Acta, Part A, 2007, vol. 68, p. 1410.
Chandra, S., Raizada, S., Tyagi, M., et al., Spectrochimica Acta, Part A, 2008, vol. 69, no. 3, p. 816.
Mahalingam, V., Chitrapriya, N., Fronczek, F.R., et al., Polyhedron, 2010, vol. 29, no. 18, p. 3363.
Pandeya, S.N., Sriram, D., Nath, G., et al., Eur. J. Pharm. Sci., 1999, vol. 9, p. 25.
Kalinowski, D.S. and Richardson, D.R., Pharmacol. Rev., 2005, vol. 57, p. 547.
Kang, I.J., Wang, L.W., Hsu, T.A., et al., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 7, p. 1948.
Kesel, A.J., Eur. J. Med. Chem., 2011, vol. 46, no. 5, p. 1656.
Karaküçük-İyidoğan, A., Taşdemir, D., Oruç-Emre, E.E., and Balzarini, J., Eur. J. Med. Chem., 2011, vol. 46, no. 11, p. 5616.
Roux, C. and Biot, C., Fut. Med. Chem., 2012, vol. 4, no. 6, p. 783.
Chellan, P., Naser, S., Vivas, L., et al., J. Organomet. Chem., 2010, vol. 695, nos. 19–20, p. 2225.
Lessa, J.A., Reis, D.C., Mendes, I.C., et al., Polyhedron, 2011, vol. 30, no. 2, p. 372.
Batista, D., Silva, P., Lachter, D., et al., Polyhedron, 2010, vol. 29, no. 10, p. 2223.
Prashanthi, Y., Kiranmai, K., Subhashini, N.J.P., et al., Spectrochimica Acta, Part A, 2008, vol. 70, p. 30.
Singh, D., Singh, R.V., and Goyal, R.B., App. Organomet. Chem., 2004, vol. 18, no. 2, p. 73.
Smitha, S., Pandeya, S.N., Stables, J.P., et al., Sci. Pharm., 2008, vol. 76, p. 621.
Al-Janabi, A.S.M., Yousef, T.A., Al-Doori, M.E.A., et al., J. Mol. Struct., 2021, vol. 1246, p. 131035.
Kasséhin, U.C., Gbaguidi, F.A., McCurdy, C.R., et al., J. Chem. Pharm. Res., 2015, vol. 7, no. 7, p. 48.
Pandeya, S.N., Sriram, D., and Nath, G., Ind. J. Pharm. Sci., 1999, vol. 16, no. 6, p. 358.
Hałdys, K. and Rafal Latajka, R., MedChemComm, 2019, vol. 10, no. 3, p. 378.
Arslan, H., Duran, N., Borekci, G., et al., Molecules, 2009, vol. 14, p. 519.
Zhu, T.H., Cao, S.W., and Yu, Y.Y., Int. J. Biol. Macromol., 2013, vol. 62, p. 589.
Buitrago, E., Vuillamy, A., Boumendjel, A., et al., Inorg. Chem., 2014, vol. 53, no. 24, p. 12848.
Hałdys, K., Goldeman, K.W., Jewgiński, M., et al., Bioorg. Chem., 2018, vol. 81, p. 577.
Xie, J., Dong, H., Yu, Y., et al., Food Chem., 2016, vol. 190, p. 709.
Yi, W., Cao, R.-H., Chen, Z.Y., et al., Chem. Pharm. Bull., 2010, vol. 58, p. 752.
Chen, L.H., Hu, Y.H., Song, W., et al., J. Agric. Food Chem., 2012, vol. 60, p. 1542.
Hałdys, K., Goldeman, W., Anger-Góra, N., et al., Pharmaceutics, 2021, vol. 14, no. 74.
Carcelli, M., Rogolino, D., Bartoli, J., et al., Food Chem., 2020, vol. 303, p. 125310.
Hałdys, K., Goldeman, W., Jewgiński, M., et al., Bioorg. Chem., 2020, vol. 94, p. 103419.
Li, Z.C., Chen, L.H., Yu, X.J., et al., J. Agric. Food Chem., 2010, vol. 58, p. 12537.
Mahetar, J.G., Mamtora, M.J., Gondaliya, M.B., et al., World J. Pharm. Res., 2014, vol. 3, p. 4383.
El Metwally, N.M., Arafa, R., and El-Ayaan, U., J. Therm. Anal. Calorim., 2014, vol. 115, p. 2357.
Bacher, F., Dömötör, O., Kaltenbrunner, M., et al., Inorg. Chem., 2014, vol. 53, p. 12595.
Ibrahim, A.A., Khaledi, H., Hassandarvish, P., et al., Dalton Trans., 2014, vol. 43, p. 3850.
Ahmed, M.F.A. and Yunus, V.M., Orient. J. Chem., 2014, vol. 30, p. 111.
El-Tabl, A.S., El-Wahed, M.M.A., and Rezk, A.M.S., Spectrochim. Acta, Part A, 2014, vol. 117, p. 772.
Jeragh, B. and El-Asmy, A., Spectrochim. Acta, Part A, 2014, vol. 130, p. 546.
Kumar, D., Singh, V.K., Khiwar, S.S., et al., J. Drug Del. Ther., 2014, vol. 4, p. 73.
Rasool, R., Hasnain, S., and Nishat, N., J. Inorg. Organomet. Polym., 2015, vol. 25, p. 763.
Yousef, T.A., El-Reash, G.A., and El-Rakhawy, E.R., Spectrochim. Acta, Part A, 2014, vol. 133, p. 568.
Ivković, S.A., Vojinović-Ješić, L.S., Leovac, V.M., et al., Struct. Chem., 2015, vol. 26, p. 269.
Vojinović-Ješić, L.S., Jovanović, L.S., Leovac, V.M., et al., Polyhedron, 2015, vol. 101, p. 196.
Netalkar, P.P., Netalkar, S.P., and Revankar, V.K., Appl. Organometal. Chem., 2015, vol. 29, p. 280.
Netalkar, P.P., Netalkar, S.P., and Revankar, V.K., Polyhedron, 2015, vol. 100, p. 215.
Sakthilatha, D., Deepa, A., and Rajavel, R., Inorg., Metal-Org., Nano-Metal, Chem., 2015, vol. 45, p. 286.
Verma, K.K., Soni Gupta, P., Solanki, K., et al., WJPPS, 2016, vol. 5, p. 1307.
Dobrova, A., Platzer, S., Bacher, F., et al., Int. J. Appl. Biol. Pharm., 2016, vol. 7, p. 258.
Venkatesh, K., Rayam, P., Sekhar, K.C., et al., Int. J. Appl. Biol. Pharm., 2016, vol. 7, p. 258.
Conner, J., Medawala, W., Stephens, M., et al., Open J. Inorg. Chem., 2016, vol. 6, p. 146.
Ahmad, M. and Ikram, S., Optik-Int. J. Light Electron Opt., 2016, vol. 127, p. 1738.
Yousef, T.A. and El-Reash, G.A., J. Mol. Struct., 2020, vol. 1201, p. 127180.
Babahan, I., Ozmen, A., and Aslan, K., Appl. Organometal. Chem., 2017, vol. 31, p. e3752.
Shakdofa, M.M., Mousa, H.A., Elseidy, A.M., et al., Appl. Organometal. Chem., 2018, vol. 32, p. e3936.
Lisic, C., Rand, E.G., Ngo, et al., Open J. Med. Chem., 2018, vol. 8, p. 30.
Polo-Cerón, D., Bioinorg. Chem. App., 2019, vol. 2019.
Mohanty, M. Banerjee, A., et al., J. Inorg. Biochem., 2020, vol. 203, p. 110908.
Matesanz, A.I., Herrero, J.M., and Faraco, E.J., Chem. Biochem., 2020, vol. 21, no. 8, p. 1226.
Mildvan, A.S. and Cohn, M., J. Biol. Chem., 1966, vol. 241, no. 5, p. 1178.
Rajarajeswari, C., Ganeshpandian, M., Palaniandavar, M., et al., J. Inorg. Bio Chem., 2014, vol. 140, p. 255.
Gubendran, A., Rajesh, J., Anitha, K., et al., J. Mol. Struct., 2014, vol. 1075, p. 419.
Ahmed, M.A.D. and Ibrahim, M.A., Beni-Suef Univ. J. Basic App. Sci., 2015, vol. 4, no. 2, p. 119.
Hughes, M.N., In: Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R.D., and McCleverty, J.A., Eds., Oxford: Pergamon, 1987, p. 541.
Pozharskii, A.F., Soldatenkov, A.T., and Katritzky, A.R., Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, New York: Wiley, 2011.
Li, M., Chen, C., Zhang, D., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 7, p. 3169.
Schatzschneider, U., Niesel, J., Ott, I., et al., Chem. Med. Chem., 2008, vol. 3, no. 7, p. 1104.
Gao, F., Chao, H., Wang, J.Q., et al., J. Bio. Inorg. Chem., 2007, vol. 12, no. 7, p. 1015.
Gao, F., Chao, H., and Zhou, F., J. Inorg. Biochem., 2008, vol. 102, nos. 5–6, p. 1050.
Gao, F., Chen, X., Wang, J.Q., et al., Inorg. Chem., 2009, vol. 48, no. 13, p. 5599.
Saswati., Dinda, R. Schmiesing, C., et al., Polyhedron, 2013, vol. 50, p. 354.
Aljahdali, M., Ahmed, A., and Sherif, E.L., Inorg. Chim. Acta, 2013, vol. 407, p. 58.
Iniama, G.E., Nfor, E.N., Okon, E.D., et al., Int. J. Sci. Tech. Res., 2014, vol. 3, no. 11, p. 73.
John, R., Sreekanth, A., Maliyeckal, R., et al., Polyhedron, 2002, vol. 21, no. 24, p. 2515.
Kaye, P.T., Wellington, K.W., and Watkins, G.M., Arkivoc, 2009, Рart XIV, p. 301.
Li, M., Chen, C., Zhang, D., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 7, p. 3169.
Uysal, S., Er, M., and Tahtaci, H., Synth. Comm., 2016, vol. 46, no. 22, p. 1820.
Dutta, J., Datta, S., Seth, D.K., et al., RSC Adv., 2012, vol. 2, p. 11751.
Talwar, D., Gonzalez-de-Castro, A., Li, H.Y., et al., Angew. Chem., 2015, vol. 54, no. 17, p. 5223.
Chandralekha, S., Ramya, K., Chandramohan, G., et al., J. Saudi Chem. Soc., 2014, vol. 18, no. 6, p. 953.
Gomez, I., Alonso, E., Ramon, D.J., et al., Tetrahedron, 2000, vol. 56, no. 24, p. 4043.
Basha, M., Chartres, J.D., Pantarat, N., et al., Dalton Trans., 2012, vol. 41, p. 6536.
Kovala-Demertzi, D., Alexandratos, A., Papageorgiou, A., et al., Polyhedron, 2008, vol. 27, no. 13, p. 2731.
Grguric-Sipka, S., Kowol, C.R., Valiahdi, S.M., et al., Eur. J. Inorg. Chem., 2007, vol. 18, p. 2870.
Pingaew, R., Prachayasittikul, S., and Ruchirawat, S., Molecules, 2010, vol. 15, p. 988.
Kovala-Demertzi, D., Boccarelli, A., Demertzi, M.A., et al., Chemother., 2007, vol. 53, no. 2, p. 148.
Castedo, L. and Tojo, G., In: The Alkaloids: Chemistry and Pharmacology, Ch. 3: Phenanthrene Alkaloids, Brossi, A., Ed., Acad. Press, 1990, p. 99.
Sigman, D.S., Bruice, T.W., Mazumder, A., et al., Acc. Chem. Res., 1993, vol. 26, no. 3, p. 98.
Chetana, P.R., Somashekar, M.N., Srinatha, B.S., et al., Inorg. Chem., 2013, p. 1.
Raman, N., Mahalakshmi, R., and Mitu, L., Spectrochim. Acta, Part A, 2014, vol. 131, p. 355.
Pravin, N., Devaraji, V., and Raman, N., Int. J. Biol. Macromol., 2015, vol. 79, p. 837.
Reddy, K.H., Reddy, P.S., and Babu, P.R., J. Inorg. Biochem., 1999, vol. 77, p. 169.
Saswati, Dinda, R. Schmiesing, C.S., et al., Polyhedron, 2013, vol. 50, no. 1, p. 354.
Jacob, J.M., Kurup, M.R.P., Nisha, K., et al., Polyhedron, 2020, vol. 189, p. 114736.
Ishak, N.N.M., Jamsari, J., Ismail, A., et al., J. Mol. Struct., 2019, vol. 1198, p. 126888.
Kumar, V.A., Sarala, Y., Siddikha, A., et al., J. App. Pharm. Sci., 2018, vol. 8, no. 4, p. 71.
Borhade, S.S. and Tryambake, P., Asian J. Chem., 2021, vol. 33, no. 4, p. 885.
Singh, R., Kumar, A., Verma, M., et al., Acta Ciencia Indica, 2016, vol. XLII C, no. 2, p. 101.
Khan, T., Ahmad, R., Azad, I., et al., Curr. Comput.-Aided Drug Des., 2021, vol. 17, no. 1, p. 107.
Omotade, E.T., Oviawe, A.P., and Elemike, E.E., J. Chem. Soc. Nigeria, 2020, vol. 45, no. 2, p. 282.
Gulea, А.P., Graür, V.O., Ulchina, I.I., et al., Russ. J. Gen. Chem., 2021, vol. 91, p. 98.
Demirci, T.B., Güveli, S., Yeşilyurt, S., et al., Inorg. Chim. Acta, 2020, vol. 502, p. 119335.
Shirode, P.R. and Patil, P.P., World J. Pharm. Res., 2021, vol. 10, no. 2, p. 1251.
Güveli, Ş., Özdemir, N., Bal-Demirci, T., et al., Transition Met. Chem., 2019, vol. 44, p. 115.
Srinivasulu, K.U., Reddy, K.H., Anuja, K., et al., Asian J. Chem., 2019, vol. 31, no. 9, p. 1905.
Altiparmak, E.A., Yazar, S., Ozdemir, N., et al., Polyhedron, 2021, vol. 209, p. 115457.
Celestine, M.J., Lawrence, M. A.W., Evaristo, N.K., et al., Inorganica Chim. Acta, 2020, vol. 510, p. 119726.
Borges, A.P., Possato, B., Hagenbach, A., et al., Inorg. Chim. Acta, 2021, vol. 516, p. 120110.
Kpomah, B., Obaleye, J.A., Enemose, E.A., et al., Life J. Sci., 2019, vol. 21, no. 3, p. 157.
Kumar, S.M., Kesavan, M.P., Kumar, G.G.V., et al., J. Mol. Struct., 2018, vol. 1153, p. 1.
Güveli, S., J. Coord. Chem., 2020, vol. 73, no. 1, p. 137.
Cotton, F.A., Murillo, C.A., Walton, R.A. In: Multiple Bonds between Metal Atoms, New York: Springer Sci. and Business Media, 2005, p. 706.
Mikuriya, M., Bull. Jpn. Soc. Coord. Chem., 2008, vol. 52, p. 17.
Mikuriya, M., Yoshioka, D., Handa, M., Coord. Chem. Rev., 2006, vol. 250, no. 17–18, p. 2194.
Stringer, T., Therrien, B., Denver, T., et al., In-org. Chem. Comm., 2011, vol. 14, no. 6, p. 956.
Maurya, M., Kumar, A., Mohammad, A., et al., Inorg. Chim. Acta, 2006, vol. 359, no. 8, p. 2439.
Lobana, T.S., Sharma, R., Bawa, G., and Khanna, S., Coord. Chem. Rev., 2009, vol. 253, nos. 7−8, p. 977.
Zsila, F., Bikadi, Z., Simonyi, M., Biochem. Pharmacol., 2003, vol. 65, no. 3, p. 447.
Diaz, A., Garcia, I., Cao, R., et al., Polyhedron, 1997, vol. 16, p. 3549.
Krishna, P.M., Reddy, K.H., Pandey, J.P., et al., Transition Met. Chem., 2008, vol. 33, no. 5, p. 661.
Raja, D.S., Nattamai, S.P., Bhuvanesh, and Karuppannan, N., Eur. J. Med.Chem., 2011, vol. 46, no. 9, p. 4584.
Kozhevnikov, V.N., Durrant, M.C., and Wiliams, J.A.G., J. Inorg. Chem., 2011, vol. 50, no. 13, p. 6304.
Haribabu, J., Sabapathi, G., Tamizh, M.M., et al., Organomet., 2018, vol. 37, no. 8, p. 1242.
Adak, P., Ghosh, B., Bauza, A., et al., RSC Adv., 2020, vol. 10, p. 12735.
Refat, M.S., Belal, A.A. M., El-Deen, I.M., et al., J. Mol. Struct., 2020, vol. 1218, p. 128516.
Kalaiarasi, G., Dharani, S., Rex, S., et al., J. Inorg. Biochem., 2020, vol. 211, p. 111176.
Gaber, A., Refat, M.S., Belal, A.A.M., et al., Molecules, 2021, vol. 26, no. 8, p. 2288.
Khanvilkar, P., Dash, S.R., Vohra, A., et al., J. Biomol. Struct. Dyn. 2020, vol. 39, no. 16.
Kokinaa, T.E., Sheludyakovaa, L.A., Ereminaa, A., et al., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2332.
Haribabu, J., Balakrishnan, N., Swaminathan, S., et al., Inorg. Chem. Commun., 2021, vol. 134, p. 109029.
Seena, E.B., Sithambaresan, M., Vasudevan, S. et al., J. Chem. Sci., 2020, vol. 132, p. 149.
Khan, M.H., Cai, M., Li, S., et al., Eur. J. Med. Chem., 2019, vol. 182, p. 111616.
Kalaiarasi, G., Dharani, S., Puschmann, H., et al., Inorg. Chem. Commun., 2018, vol. 97, p. 34.
Hosseinpour, S., Hosseini-Yazdi, S.A., White, J. I-norg. Chim. Acta, 2017, vol. 461, p. 150.
Balakrishnan, N., Haribabu, A., Dhanabalan, K., Dalton Trans., 2020, vol. 49, p. 9411.
Li, J., Wang, B., Chang, B., et al., J. Mol. Str,. 2021, vol. 1231, 5 p. 129674.
ACKNOWLEDGMENTS
The authors are grateful to Prof. A.R. Khan, Head, Deapartment of Chemistry, Integral University, Lucknow and Dr. (Mrs.) V. Prakash, Princiapal, Isabella Thoburn College, Lucknow for their support.
Funding
The study did not receive any funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no competing interests.
Rights and permissions
About this article
Cite this article
Khan, T., Raza, S. & Lawrence, A.J. Medicinal Utility of Thiosemicarbazones with Special Reference to Mixed Ligand and Mixed Metal Complexes: A Review. Russ J Coord Chem 48, 877–895 (2022). https://doi.org/10.1134/S1070328422600280
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1070328422600280