Skip to main content
Log in

Complexes of Zinc, Nickel(II), and Cobalt(II) Cymantrenate Complexes with Pyrazole and 3,5-Dimethylpyrazole: Synthesis and Structural Features

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of cymantrenates M[(OOС5CH4)Mn(CO)3]2(MeOH)4 (M = Zn, Co(II), Ni(II)) with pyrazole (HPz) results in replacement of labile methanol molecules by the heterocyclic ligand and gives mononuclear complexes Zn[(OOCC5H4)Mn(CO)3]2(HPz)2 (I), Ni[(OOCC5H4)Mn(CO)3]2(HPz)4 (II), and Co[(OOCC5H4)Mn(CO)3]2(HPz)4 (III). A similar reaction of cobalt cymantrenate with more basic and sterically bulky 3,5-dimethylpyrazole (HDmpz) gives the complex Co[(OOCC5H4)Mn(CO)3]2(HDmpz)2 (IV). Compounds IIV were characterized by X-ray diffraction (CCDC nos. 2157671 (I), 2157672 (II), 2157669 (III), and 2157670 (IV)), IR spectroscopy, and elemental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cotton, F.A., Wilkincon, G., Murillo, C.A., and Bochmann, M., Advanced Inorganic Chemistry, Wiley, 1999, p. 493.

    Google Scholar 

  2. Mehrotra, R.C. and Bohra, R., Metal Carboxylates, London: Academic, 1983.

    Google Scholar 

  3. Cotton, F.A., Lin, C., and Murillo, C.A., Acc. Chem. Res., 2001, vol. 34, no. 10, p. 759.

    Article  CAS  PubMed  Google Scholar 

  4. Molenveld, P., Engbersen, J.F.J., and Reinhoudt, D.N., Chem. Soc. Rev., 2000, vol. 29, p. 75.

    Article  CAS  Google Scholar 

  5. Meurig, J., Thomas, B., Johnson, F.G., et al., Acc. Chem. Res., 2003, vol. 36, p. 20.

    Article  Google Scholar 

  6. Bondarenko, M.A., Novikov, A.S., Sokolov, M.N., and Adonin, S.A., Inorg. Chim. Acta, 2021, vol. 524, p. 120436.

    Article  CAS  Google Scholar 

  7. Yashkova, K.A., Mel’nikov, S.N., Nikolaevskii, S.A., et al., J. Struct. Chem., 2021, vol. 62, p. 1378.

    Article  CAS  Google Scholar 

  8. Adonin, S., Petrov, M., Abramov, P., et al., Polyhedron, 2019, vol. 159, p. 171.

    Article  Google Scholar 

  9. Adonin, S.A., Petrov, M.D., Novikov, A.S., et al., J. Cluster Sci., 2019, vol. 30, p. 857.

    Article  CAS  Google Scholar 

  10. Lutsenko, I., Kiskin, M., Nikolaevskii, S., et al., Chem. Select., 2019, vol. 38, p. 14261.

    Google Scholar 

  11. Li, H. and Marks, T.J., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, p. 15295.

    Article  CAS  PubMed  Google Scholar 

  12. Murugesapandian, B. and Roesky, P.W., Z. Anorg. Allg. Chem., 2011, vol. 637, p. 1818.

    Article  CAS  Google Scholar 

  13. Shapovalov, S.S., Pasynskii, A.A., Skabitskii, I.V., et al., Russ. J. Coord. Chem., 2014, vol. 40, p. 77. https://doi.org/10.1134/S1070328414020092

    Article  CAS  Google Scholar 

  14. Pasynskii, A.A., Shapovalov, S.S., Gordienko, A.V., et al., Inorg. Chim. Acta, 2012, vol. 384, p. 18.

    Article  CAS  Google Scholar 

  15. Valyaev, D.A., César, V., Lugan, N., et al., Dalton Trans., 2016, vol. 45, p. 11953.

    Article  CAS  PubMed  Google Scholar 

  16. Guo Dong, Li Yu-ting, Duan Chun-ying, et al., Inorg. Chem., 2003, vol. 42, p. 2519.

    Article  CAS  PubMed  Google Scholar 

  17. Koroteev, P.S., Kiskin, M.A., Dobrokhotova, Zh.V., et al., Polyhedron, 2011, vol. 30, p. 2523.

    Article  CAS  Google Scholar 

  18. Koroteev, P.S., Dobrokhotova, Zh.V., Kiskin, M.A., et al., Polyhedron, 2012, vol. 43, p. 36.

    Article  CAS  Google Scholar 

  19. Koroteev, P.S., Dobrokhotova, Z.V., Il’ukhin, A.B., et al., Polyhedron, 2015, vol. 85, p. 941.

    Article  CAS  Google Scholar 

  20. Koroteev, P.S., Ilyukhin, A.B., and Gavrikov, A.V., Molecules, 2022, vol. 27, p. 1082.

    Article  CAS  PubMed  Google Scholar 

  21. Chandrasekhar, V. and Nagarajan, L., Dalton Trans., 2009, vol. 34, p. 6712.

    Article  Google Scholar 

  22. Perova, E.V., Yakovleva, M.A., Baranova, E.O., et al., Russ. J. Inorg. Chem., 2010, vol. 55, p. 714. https://doi.org/10.1134/S0036023610050104

    Article  CAS  Google Scholar 

  23. Amel’chenkova, E.V., Denisova, T.O., and Nefedov, S.E., Russ. J. Inorg. Chem., 2006, vol. 51, p. 1218. https://doi.org/10.1134/S0036023606080110

    Article  Google Scholar 

  24. Yoshida, J., Kondo, S., and Yuge, H., Dalton Trans., 2013, vol. 7, p. 42.

    Google Scholar 

  25. Cingolani, A., Galli, S., Masciocchi, N., et al., Dalton Trans., 2006, vol. 20, p. 2479.

    Article  Google Scholar 

  26. Uvarova, M.A. and Nefedov, S.E., Russ. J. Inorg. Chem., 2021, vol. 66, p. 1660. https://doi.org/10.1134/S0036023621110218

    Article  CAS  Google Scholar 

  27. Appavoo, D., Omondi, B., Guzei, I.A., et al., Polyhedron, 2014, vol. 69, p. 55.

    Article  CAS  Google Scholar 

  28. Carlotto, S., Casarin, M., Lanza, A., et al., Cryst. Growth Des., 2015, vol. 15, p. 5910.

    Article  CAS  Google Scholar 

  29. Uvarova, M.A., Ageshina, A.A., Golubnichaya, M.A., and Nefedov, S.E., Russ. J. Inorg. Chem, 2015, vol. 60, p. 934. https://doi.org/10.1134/S0036023615080215

    Article  CAS  Google Scholar 

  30. Uvarova, M.A. and Nefedov, S.E., Russ. J. Inorg. Chem., 2015, vol. 60, p. 1348. https://doi.org/10.1134/S0036023615110212

    Article  CAS  Google Scholar 

  31. Kaikai Hu, Shouwen Jin, Zuoran Xie, et al., Polyhedron, 2018, vol. 139, p. 17.

    Article  CAS  Google Scholar 

  32. Ananyev, I.V., Nefedov, S.E., and Lyssenko, K.A., Eur. J. Inorg. Chem., 2013, p. 2736.

  33. Deka, K., Laskar, M., and Baruah, J.B., Polyhedron, 2006, vol. 25, p. 2525.

    Article  CAS  Google Scholar 

  34. Cingolani, A., Galli, S., Masciocchi, N., et al., Dalton Trans., 2006, vol. 20, p. 2479.

    Article  Google Scholar 

  35. Anan’ev, I.V., Yakovleva, M.A., Perova, E.V., and Nefedov, S.E., Russ. J. Inorg. Chem., 2010, vol. 55, p. 1057. https://doi.org/10.1134/S0036023610070119

  36. Uvarova, M.A., Ageshina, A.A., Grineva, A.A., et al., Russ. J. Inorg. Chem., 2015, vol. 60, p. 566. https://doi.org/10.1134/S0036023615050186

    Article  CAS  Google Scholar 

  37. Uvarova, M.A., Ageshina, A.A., Nefedov, S.E., et al., Russ. J. Inorg. Chem., 2015, vol. 60, p. 1210. https://doi.org/10.1134/S0036023615100198

    Article  CAS  Google Scholar 

  38. Ageshina, A.A., Uvarova, M.A., and Nefedov, S.E., Russ. J. Inorg. Chem., 2015, vol. 60, no. 9, р. 1085. https://doi.org/10.1134/S0036023615090028

  39. Ageshina, A.A., Uvarova, M.A., and Nefedov, S.E., Russ. J. Inorg. Chem., 2015, vol. 60, p. 1218. https://doi.org/10.1134/S0036023615100022

    Article  CAS  Google Scholar 

  40. Uvarova, M.A. and Nefedov, S.E., Russ. J. Inorg. Chem., 2015, vol. 60, p. 1074. https://doi.org/10.1134/S003602361509020X

    Article  CAS  Google Scholar 

  41. Nesmeyanov, A.N., Anisimov, K.N., Kolobova, N.E., and Makarov, Y.V., Russ. Chem. Bull., 1968, vol. 17, p. 672.

    Article  Google Scholar 

  42. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

  43. SAINT. Area-Detector Integration Sofware, Madison: Bruker AXS Inc., 2012.

  44. Sheldrick, G.M., SADABS. Program for Scaling and Correction of Area Detector Data, Göttingen: Univ. of Göttingen, 1997.

    Google Scholar 

  45. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  46. Halcrow, M.A., Streib, W.E., Folting, K., and Christou, G., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, vol. 51, p. 1263. https://doi.org/10.1107/S0108270194013764

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction and IR spectroscopic studies and elemental analysis were carried out using equipment of the Center for Collective Use of the Physical Investigation Methods of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Uvarova.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarova, M.A., Nefedov, S.E. Complexes of Zinc, Nickel(II), and Cobalt(II) Cymantrenate Complexes with Pyrazole and 3,5-Dimethylpyrazole: Synthesis and Structural Features. Russ J Coord Chem 48, 565–571 (2022). https://doi.org/10.1134/S107032842209007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107032842209007X

Key words:

Navigation