Skip to main content
Log in

Generation of Long-Lived Phenoxyl Radical in the Binuclear Copper(II) Pivalate Complex with 2,6-Di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A new binuclear copper(II) complex Cu2(Piv)4(L)2, where Piv = pivalate, L = 2,6-di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol, was synthesized, and its molecular and crysral structures were determined at temperatures of 160, 173, and 296 K (CIF files CCDC no. 2144104, 2144105, and 2144106, respectively). Cyclic voltammetry measurements revealed three irreversible oxidation processes in the potential range of 0.5–1.2 V versus Fc+/Fc. Analysis of the temperature dependence of the magnetic susceptibility of Cu2(Piv)4(L)2 showed that antiferromagnetic interactions of Cu2+ ions predominate in the complex. It was found that the oxidation of Cu2(Piv)4(L)2 upon grinding with PbO2 or treatment of a solid sample with an aqueous solution of K3[Fe(CN)6] affords long-lived phenoxyl radical, which can be detected by ESR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rinehart, J.D. and Long, J.R., Chem. Sci., 2011, vol. 2, p. 2078.

    Article  CAS  Google Scholar 

  2. Craig, G.A. and Murrie, M., Chem. Soc. Rev., 2015, vol. 44, p. 2135.

    Article  Google Scholar 

  3. Liu, J.-L., Chen, Y.-C., and Tong, M.-L., Chem. Soc. Rev., 2018, vol. 47, p. 2431.

    Article  CAS  PubMed  Google Scholar 

  4. D’Alessandro, D.M., Chem. Commun., 2016, vol. 52, p. 8957.

    Article  CAS  Google Scholar 

  5. Falcaro, P., Ricco, R., Doherty, C.M., et al., Chem. Soc. Rev., 2014, vol. 43, p. 5513.

    Article  CAS  PubMed  Google Scholar 

  6. DeGayner, J.A., Jeon, I.-R., Sun, L., et al., J. Am. Chem. Soc., 2017, vol. 139, p. 4175.

    Article  CAS  PubMed  Google Scholar 

  7. Feng, T., Ye, Y., Liu, X., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 21752.

    Article  CAS  Google Scholar 

  8. Calbo, J., Golomb, M.J., and Walsh, A., J. Mater. Chem. A, 2019, vol. 7, p. 16571.

    Article  CAS  Google Scholar 

  9. Sasaki, K., Yamate, H., Yoshino, H., et al., Chem. Commun., 2020, vol. 56, p. 12961.

    Article  CAS  Google Scholar 

  10. Li, H.-Y., Zhao, S.-N., Zang, S.-Q., et al., Chem. Soc. Rev., 2020, vol. 49, p. 6364.

    Article  CAS  PubMed  Google Scholar 

  11. Li, Z., Wang, G., Ye, Y., et al., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, p. 18025.

    Article  CAS  Google Scholar 

  12. Espallargas, M.G. and Coronado, E., Chem. Soc. Rev., 2018, vol. 47, p. 533.

    Article  Google Scholar 

  13. Zhou, Y., Yu, F., Su, J., et al., Angew. Chem., Int. Ed. Engl., 2020, vol. 59, p. 18763.

    Article  CAS  Google Scholar 

  14. Pasha, S.S., Yadav, H.R., Choudhury, A.R., et al., J. Mater. Chem., 2017, vol. 5, p. 9651.

    CAS  Google Scholar 

  15. García-Valdivia, A.A., Pérez-Yáñez, S., Garcia, J.A., et al., Sci. Rep., 2020, vol. 10, p. 8843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang, Z., Yuan, X., Cong, S., et al., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 15065.

    Article  CAS  PubMed  Google Scholar 

  17. Kragt, A.J.J., Zuurbier, N.C.M., Broer, D.J., et al., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 28172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shimizu, D., Ide, Y., Ikeue, T., et al., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, p. 5023.

    Article  CAS  Google Scholar 

  19. Woods, T.J., Stout, H.D., Dolinar, B.S., et al., Inorg. Chem., 2017, vol. 56, p. 12094.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, P., Santalucia, D.J., Kaniewska-Laskowska, K., et al., Inorg. Chem., 2020, vol. 59, p. 16178.

    Article  CAS  PubMed  Google Scholar 

  21. Alexandropoulos, D.I., Vignesh, K.R., Xie, H., et al., Chem. Commun., 2020, vol. 56, p. 9122.

    Article  CAS  Google Scholar 

  22. Liu, J., Dyes Pigm., 2019, vol. 160, p. 476.

    Article  CAS  Google Scholar 

  23. Tansakul, C., Lilie, E., Walter, E.D., et al., J. Phys. Chem. C, 2010, vol. 114, p. 7793.

    Article  CAS  Google Scholar 

  24. Tretyakov, E.V. and Ovcharenko, V.I., Russ. Chem. Rev., 2009, vol. 78, p. 971.

    Article  CAS  Google Scholar 

  25. Ovcharenko, V., Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Hicks, R.G., Ed., New York: Wiley, 2010, p. 461.

    Google Scholar 

  26. Ovcharenko, V.I., Maryunina, K.Yu., Fokin, S.V., et al., Russ. Chem. Bull., 2004, vol. 53, p. 2406.

    Article  CAS  Google Scholar 

  27. Fedin, M., Veber, S., Gromov, I., et al., Inorg. Chem., 2007, vol. 46, p. 11405.

    Article  CAS  PubMed  Google Scholar 

  28. Romanenko, G.V., Maryunina, K.Y., Bogomyakov, A.S., et al., Inorg. Chem., 2011, vol. 50, p. 6597.

    Article  CAS  PubMed  Google Scholar 

  29. Yakovenko, A.V., Kolotilov, S.V., Addison, A.W., et al., Inorg. Chem. Commun., 2005, vol. 8, p. 932.

    Article  CAS  Google Scholar 

  30. Dorofeeva, V.N., Pavlishchuk, A.V., Kiskin, M.A., et al., ACS Omega, 2019, vol. 4, p. 203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dorofeeva, V.N., Lytvynenko, A.S., Kiskin, M.A., et al., Book of Abstracts of VI International ConferenceHigh-Spin Molecules and Molecular Magnets,” Rostov-on-Don, 2012, p. 92.

  32. Denisova, T.O., Amel’chenkova, E.V., Pruss, I.V., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 7, p. 1020.

    Article  Google Scholar 

  33. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS Inc., 1997.

  34. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  CAS  Google Scholar 

  35. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.

    Article  CAS  Google Scholar 

  36. Spek, A.L., PLATON. A Multipurpose Crystallographic Tool, Utrecht: Utrecht University, 2006.

    Google Scholar 

  37. Kahn, O., Molecular Magnetism, Weinheim: VCH, 1993.

    Google Scholar 

  38. Pavlishchuk, V.V. and Addison, A.W., Inorg. Chim. Acta, 2000, vol. 298, p. 97.

    Article  CAS  Google Scholar 

  39. Dorofeeva, V.N., Mishura, A.M., Lytvynenko, A.S., et al., Theor. Exp. Chem., 2016, vol. 52, p. 111.

    Article  CAS  Google Scholar 

  40. Polunin, R.A., Burkovskaya, N.P., Kolotilov, S.V., et al., Izv. Akad. Nauk. Ser. Khim., 2014, vol. 1, p. 252.

    Google Scholar 

  41. Reger, D.L., Debreczeni, A., Smith, M.D., et al., Inorg. Chem., 2012, vol. 51, p. 1068.

    Article  CAS  PubMed  Google Scholar 

  42. Kawamura, K., Makishima, Y., and Ochiai, Y., Carbon Sci. Tech., 2009, vol. 2, p. 73.

    CAS  Google Scholar 

  43. Kalinnikov, V.T. and Rakitin, Yu.V., Vvedenie v magnetokhimiyu. Metod staticheskoi magnitnoi vospriimchivosti v khimii (Introduction to Magnetochemistry. Static Magnetic Susceptibility Method in Chemistry), Moscow: Nauka, 1980.

  44. Fomina, I., Dobrokhotova, Z., Aleksandrov, G., et al., Polyherdron, 2010, vol. 29, p. 1734.

    Article  CAS  Google Scholar 

  45. Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance: With Applications to Chemistry and Chemical Physics (Science Books), Chapman and Hall, 1979.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

A.V. Pavlishchuk, V.V. Pavlishchuk, V.N. Dorofeeva, S.V. Kolotilov, and K.S. Gavrilenko are grateful to the National Academy of Sciences of Ukraine (Project “Metal-Organic Frameworks and Polynuclear Complexes: Chemical Design, Structural Adsorption and Magnetic Luminescent Properties” based on the results of the joint competition of the National Academy of Sciences of Ukraine and the Russian Foundation for Basic Research of 2012). M.A. Kiskin, N.N. Efimov, V.V. Minin, and I.L. Eremenko are grateful to the Ministry of Education and Science of the Russian Federation for funding the research carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences. The authors wish to thank A.S. Litvinenko (Pisarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine) for help in cyclic voltammogram measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kiskin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The authors congratulate Academician V. I. Ovcharenko on the 70th birthday

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, V.N., Pavlishchuk, A.V., Kiskin, M.A. et al. Generation of Long-Lived Phenoxyl Radical in the Binuclear Copper(II) Pivalate Complex with 2,6-Di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol. Russ J Coord Chem 48, 422–429 (2022). https://doi.org/10.1134/S1070328422070041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422070041

Key words:

Navigation