Skip to main content
Log in

Coordination Chemistry and Magnetic Properties of Bi- and Polynuclear Exchange-Coupled Cu(II) and Ni(II) Metal Oximates

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

This review is an attempt to describe the potential of magnetochemical approach for describing the structure and properties of bi- and polynuclear metal chelates based on coordination compounds with a limited number of ligand types, mainly oxime-containing azomethines and their analogues. The review systematically addresses the published data on bi- and polynuclear copper(II) and nickel(II) complexes in which the paramagnetic centers are coupled by both intra- and intermolecular exchange interactions. Within the limited analysis, the main types and mechanisms of exchange interactions are considered and some electronic and geometric factors that determine the magnetic properties of bi- and polynuclear copper(II) and nickel(II) complexes with oximate ligands are identified. The relationship between electronic and geometric features of the complexes and the nature of exchange effects are considered, and an attempt is made to systematize the magneto-structural correlations in the discussed compounds, which are important model objects for developing a strategy for targeted design of one-, two-, and three-dimensional magnetically ordered structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Zhao, L., Niel, V., Thompson, L.K., et al., Dalton Trans., 2004, no. 9, p. 1446.

  2. Anwar, M.U., Shuvaev, K.V., Dawe, L.N., et al., Inorg. Chem., 2011, vol. 50, p. 12141.

    CAS  PubMed  Google Scholar 

  3. Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, p. 1717.

    CAS  Google Scholar 

  4. Naskar, S., Corbella, M., Blake, A.J., et al., Dalton Trans., 2007, no. 11, p. 1150.

  5. Bermejo, M.R., González-Noya, A.M., Martínez-Calvo, M., et al., Eur. J. Inorg. Chem., 2008, no. 24, p. 3852.

  6. Mezei, G., Zaleski, C.M., and Pecoraro, V.L., Chem. Rev., 2007, vol. 107, p. 4933.

    CAS  PubMed  Google Scholar 

  7. Bai, Y., Dang, D.-B., Duan, C.-Y., et al., Inorg. Chem., 2005, vol. 44, p. 5972.

    CAS  PubMed  Google Scholar 

  8. Ruben, M., Rojo, J., Romero-Salguero, F.J., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 3644.

    CAS  Google Scholar 

  9. Moroz, Y.S., Kulon, K., Haukka, M., et al., Inorg. Chem., 2008, vol. 47, p. 5656.

    CAS  PubMed  Google Scholar 

  10. Moroz, Y.S., Szyrwiel, L., Demeshko, S., et al., Inorg. Chem., 2010, vol. 49, p. 4750.

    CAS  PubMed  Google Scholar 

  11. Moroz, Y.S., Demeshko, S., Haukka, M., et al., Inorg. Chem., 2012, vol. 51, p. 7445.

    CAS  PubMed  Google Scholar 

  12. Feig, A.L. and Lippard, S.J., Chem. Rev., 1994, vol. 94, p. 759.

    CAS  Google Scholar 

  13. Que, L. and True, A.E., Prog. Inorg. Chem., 1990, vol. 38, p. 97.

    CAS  Google Scholar 

  14. Lippard, S.J. and Berg, J.M., Principles of Bioinorganic Chemistry, Mill Valley: University Science Books, 1994.

    Google Scholar 

  15. Kaim, W. and Schwederski, B., Bioanorganische Chemie, Stuttgart: B.G. Teubner, 1991.

  16. Mechanistic Bioinorganic Chemistry, Thorp H.H. and Pecoraro V.L., Eds., Washington: American Chemical Society, 1995.

    Google Scholar 

  17. Magneto-Structural Correlations in Exchange Coupled Systems, Willett R.D., Gatteschi D., and Kahn O., Eds., Dordrecht: Kluwer Academic, 1985.

    Google Scholar 

  18. Magnetic Molecular Materials, Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F., Eds., Dordrecht: Kluwer Academic, 1991.

    Google Scholar 

  19. Kahn, O., Molecular Magnetism, Weinheim: VCH-Verlagsgesellschaft, 1993.

    Google Scholar 

  20. Kahn, O., Adv. Inorg. Chem., 1995, vol. 43, p. 179.

    CAS  Google Scholar 

  21. Murray, K.S., Adv. Inorg. Chem., 1995, vol. 43, p. 261.

    CAS  Google Scholar 

  22. Research Frontiers in Magnetochemistry, O’Connor, C.J., Ed., Singapore: World Scientific, 1993.

  23. Ruben, M., Lehn, J.-M., and Müller, P., Chem. Soc. Rev., 2006, vol. 35, p. 1056.

    CAS  PubMed  Google Scholar 

  24. Anwar, M.U., Dawe, L.N., Alam, M.S., et al., Inorg. Chem., 2012, vol. 51, p. 11241.

    CAS  PubMed  Google Scholar 

  25. Lone, I.H., Khan, K.Z., Fozdar, B.I., et al., Steroids, 2013, vol. 78, p. 945.

    CAS  PubMed  Google Scholar 

  26. Handbook of Toxicology of Chemical Warfare Agents, Gupta, R.C., Ed., San Diego: Academic, 2009.

    Google Scholar 

  27. Boyko, Y.D., Sukhorukov, A.Y., Semakin, A.N., et al., Polyhedron, 2014, vol. 71, p. 24.

    CAS  Google Scholar 

  28. Sauer, J., Hachem, M.A., Svensson, B., et al., Carbohydr. Res., 2013, vol. 375, p. 21.

    CAS  PubMed  Google Scholar 

  29. Kassa, J., Karasová, J.Ž., Kuča, K., et al., J. Appl. Biomed., 2014, vol. 12, p. 111.

    Google Scholar 

  30. Harini, S.T., Kumar, H.V., Rangaswamy, J., et al., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 7588.

    CAS  PubMed  Google Scholar 

  31. Banday, A.H., Akram, S.M.M., and Shameem, S.A., Steroids, 2014, vol. 84, p. 64.

    CAS  PubMed  Google Scholar 

  32. Wen, Y., Li, J., Yang, F., et al., Talanta, 2013, vol. 106, p. 119.

    CAS  PubMed  Google Scholar 

  33. Odžak, R., Skočibušić, M., and Maravić, A., Bioorg. Med. Chem., 2013, vol. 21, p. 7499.

    PubMed  Google Scholar 

  34. Türkkan, B., Özyürek, M., Bener, M., et al., Spectrochim. Acta, Part A, 2012, vol. 85, p. 235.

    Google Scholar 

  35. Beckett, R., Colton, R., Hoskins, B.F., et al., Aust. J. Chem., 1969, vol. 22, p. 2527.

    CAS  Google Scholar 

  36. Bertrand, J.A., Smith, J.H., and Eller, P.G., Inorg. Chem., 1974, vol. 13, p. 1649.

    CAS  Google Scholar 

  37. Ruiz, R., Sanz, J., Cervera, B., et al., Dalton Trans., 1993, no. 10, p. 1623.

  38. Ruiz, R., Sanz, J., Lloret, F., et al., Dalton Trans., 1993, no. 20, p. 3035.

  39. Cervera, B., Ruiz, R., Lloret, F., et al., Dalton Trans., 1997, no. 3, p. 395.

  40. Chaudhuri, P., Winter, M., Della Vedova, B.P.C., et al., Inorg. Chem., 1991, vol. 30, p. 2148.

    CAS  Google Scholar 

  41. Bertrand, J.A., Smith, J.H., and VanDerveer, D.G., Inorg. Chem., 1977, vol. 16, p. 1477.

    CAS  Google Scholar 

  42. Naskar, J.P., Biswas, C., Guhathakurta, B., et al., Polyhedron, 2011, vol. 30, p. 2310.

    CAS  Google Scholar 

  43. Gingsberg, A.P., Inorg. Chim. Acta Rev., 1971, vol. 5, p. 45.

    Google Scholar 

  44. Song, Y., Chen, X.-T., Zheng, C.-G., et al., Transition Met. Chem., 2001, vol. 26, p. 247.

    CAS  Google Scholar 

  45. Butcher, R.J., O’Connor, C.J., and Sinn, E., Inorg. Chem., 1979, vol. 18, p. 1913.

    CAS  Google Scholar 

  46. Thompson, L.K., Xu, Z., Goeta, A.E., et al., Inorg. Chem., 1998, vol. 37, p. 3217.

    CAS  Google Scholar 

  47. Naskar, J.P., Guhathakurta, B., Lu, L., et al., Polyhedron, 2012, vol. 43, p. 89.

    CAS  Google Scholar 

  48. Guhathakurta, B., Basu, P., Kumar, G.S., et al., Polyhedron, 2016, vol. 110, p. 227.

    CAS  Google Scholar 

  49. Tandon, S.S., Bunge, S.D., Motry, D., et al., Inorg. Chem., 2009, vol. 48, p. 4873.

    CAS  PubMed  Google Scholar 

  50. Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 163. https://doi.org/10.1134/S1070328419030060

    Article  CAS  Google Scholar 

  51. Atzori, M., Serpe, A., Deplano, P., et al., Inorg. Chem. Front., 2015, vol. 2, p. 108.

    CAS  Google Scholar 

  52. Biswas, R., Mukherjee, S., Ghosh, S., et al., Inorg. Chem. Commun., 2015, vol. 56, p. 108.

    CAS  Google Scholar 

  53. Karmakar, S., Das, O., Ghosh, S., et al., Dalton Trans., 2010, vol. 39, p. 10920.

    CAS  PubMed  Google Scholar 

  54. Khanra, S., Weyhermüller, T., and Chaudhuri, P., Dalton Trans., 2007, no. 41, p. 4675.

  55. Khanra, S., Weyhermüller, T., and Chaudhuri, P., Dalton Trans., 2008, no. 36, p. 4885.

  56. Estes, W.E. and Hartfield, W.E., Inorg. Chem., 1978, vol. 17, p. 3226.

    CAS  Google Scholar 

  57. Talukder, P., Sen, S., Mitra, S., et al., Eur. J. Inorg. Chem., 2006, vol. 2006, p. 329.

    Google Scholar 

  58. Valigura, D., Moncol, J., Korabik, M., et al., Eur. J. Inorg. Chem., 2006, vol. 2006, p. 3813.

    Google Scholar 

  59. Tang, J., Costa, J.S., Golobič, A., et al., Inorg. Chem., 2009, vol. 48, p. 5473.

    CAS  PubMed  Google Scholar 

  60. Stamatatos, T.C., Vlahopoulou, J.C., Sanakis, Y., et al., Inorg. Chem. Commun., 2006, vol. 9, p. 814.

    CAS  Google Scholar 

  61. Liu, X., de Miranda, M.P., McInnes, E.J.L., et al., Dalton Trans., 2004, no. 1, p. 59.

  62. Tsukerblat, B.S., Belinskii, M.I., and Fainzil’berg, V.E., Sov. Sci. Rev. B, 1987, vol. 9, p. 339.

    Google Scholar 

  63. Rakitin, Y.V., Yablokov, Y.V., and Zelentsov, V.V., J. Magn. Res., 1981, vol. 43, p. 288.

    CAS  Google Scholar 

  64. Das, L.K., Drew, M.G.B., Diaz, C., et al., Dalton Trans., 2014, vol. 43, p. 7589.

    CAS  PubMed  Google Scholar 

  65. Ferrer, S., Lloret, F., Bertomeu, I., et al., Inorg. Chem., 2002, vol. 41, p. 5821.

    CAS  PubMed  Google Scholar 

  66. Moriya, T., Phys. Rev. Lett., 1960, vol. 4, p. 228.

    CAS  Google Scholar 

  67. Ferrer, S., Lloret, F., Pardo, E., et al., Inorg. Chem., 2012, vol. 51, p. 985.

    CAS  PubMed  Google Scholar 

  68. Yoon, J., Mirica, L.M., Stack, T.D.P., et al., J. Am. Chem. Soc., 2004, vol. 126, p. 12586.

    CAS  PubMed  Google Scholar 

  69. Afrati, T., Dendrinou-Samara, C., Raptopoulou, C., et al., Dalton Trans., 2007, no. 44, p. 5156.

  70. Dhal, P., Nandy, M., Sadhukhan, D., et al., Dalton Trans., 2013, vol. 42, p. 14545.

    CAS  PubMed  Google Scholar 

  71. Bleaney, B. and Bowers, K.D., Proc. Roy. Soc. Lond. A, 1952, vol. 214, p. 451.

    CAS  Google Scholar 

  72. Das, L.K., Diaz, C., and Ghosh, A., Cryst. Growth Des., 2015, vol. 15, p. 3939.

    CAS  Google Scholar 

  73. Bie, H.-Y., Yu, J.-H., Xu, J.-Q., et al., J. Mol. Struct., 2003, vol. 660, p. 107.

    CAS  Google Scholar 

  74. Sen, S., Mitra, S., Hughes, D.L., et al., Polyhedron, 2007, vol. 26, p. 1740.

    CAS  Google Scholar 

  75. Mesa, J.L., Rojo, T., Arriortua, M.I., et al., Dalton Trans., 1989, no. 1, p. 53.

  76. Hou, L., Li, D., Shi, W.-J., et al., Inorg. Chem., 2005, vol. 44, p. 7825.

    CAS  PubMed  Google Scholar 

  77. Goher, M.A.S., Yang, Q.-C., and Mak, T.C.W., Polyhedron, 2000, vol. 19, p. 615.

    CAS  Google Scholar 

  78. Krautscheid, H., Emig, N., Klaassen, N., et al., Dalton Trans., 1998, no. 18, p. 3071.

  79. Kalinnikov, V.T. and Rakitin, Yu.V. Vvedenie v magnetokhimiyu. Metod staticheskoi magnitnoi vospriimchivosti (Introduction to Magnetochemistry. Static Magnetic Suscetibility Method), Mowcow: Nauka, 1980.

  80. Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.

  81. Agnus, Y., Louis, R., Jesser, R., et al., Inorg. Nucl. Chem. Lett., 1976, vol. 12, p. 455.

    CAS  Google Scholar 

  82. Das, O., Adarsh, N.N., Paul, A., et al., Inorg. Chem., 2010, vol. 49, p. 541.

    CAS  PubMed  Google Scholar 

  83. Pavlishchuk, V.V., Kolotilov, S.V., Addison, A.W., et al., Inorg. Chem., 1999, vol. 38, p. 1759.

    CAS  PubMed  Google Scholar 

  84. Das, L.K., Biswas, A., Kinyon, J.S., et al., Inorg. Chem., 2013, vol. 52, p. 11744.

    CAS  PubMed  Google Scholar 

  85. Escuer, A., Vicente, R., Kumar, S.B., et al., Dalton Trans., 1998, no. 20, p. 3473.

  86. Pavlishchuk, V.V., Kolotilov, S.V., Addison, A.W., et al., Dalton Trans., 2003, no. 8, p. 1587.

  87. Pavlishchuk, V.V., Kolotilov, S.V., Addison, A.W., et al., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 4734.

    CAS  Google Scholar 

  88. Nanda, K.K., Thompson, L.K., Bridson, J.N., et al., Chem. Commun., 1994, no. 11, p. 1337.

  89. Escuer, A., Font-Bardia, M., Kumar, S.B., et al., Polyhedron, 1999, vol. 18, p. 909.

    CAS  Google Scholar 

  90. Halcrow, M.A., Sun, J.-S., Huffman, J.C., et al., Inorg. Chem., 1995, vol. 34, p. 4167.

    CAS  Google Scholar 

  91. Serna, Z.E., Lezama, L., Urtiaga, M.K., et al., Angew. Chem., Int. Ed. Engl., 2000, vol. 39, p. 344.

    CAS  Google Scholar 

  92. Audhya, A., Maity, M., Bhattacharya, K., et al., Inorg. Chem., 2010, vol. 49, p. 9026.

    CAS  PubMed  Google Scholar 

  93. Dawe, L.N. and Thompson, L.K., Dalton Trans., 2008, no. 27, p. 3610.

  94. Jiang, Y.-B., Kou, H.-Z., Wang, R.-J., et al., Inorg. Chem., 2005, vol. 44, p. 709.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lukov.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukov, V.V., Tupolova, Y.P., Shcherbakov, I.N. et al. Coordination Chemistry and Magnetic Properties of Bi- and Polynuclear Exchange-Coupled Cu(II) and Ni(II) Metal Oximates. Russ J Coord Chem 48, 127–145 (2022). https://doi.org/10.1134/S1070328422020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422020038

Keywords:

Navigation