Skip to main content
Log in

Synthesis and Structure of Gold Complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3, CH2CN) and Ph3PC(H)(CN)Au(CN)2Cl

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The ionic complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3 (I), CH2CN (II)) were prepared by the reactions of organyltriphenylphosphonium chlorides with potassium dichlorodicyanoaurate in water followed by recrystallization from acetonitrile. Apart from the major product II, the crystals of the molecular complex Ph3PC(H)(CN)Au(CN)2Cl (III) were isolated. The products were characterized by X-ray diffraction (CIF files CCDC nos. 1957185 (I), 2060227 (II), 2066549 (III)) and NMR and IR spectroscopy. According to X-ray diffraction data, complexes I and II consisted of organyltriphenylphosphonium cations with a slightly distorted tetrahedral geometry of phosphorus atoms and the centrosymmetric square anions [Au(CN)2Cl2], which, in the case of complex II, form coordination pseudopolymer chains via the Au∙∙∙Cl interanion contacts (3.40 Å). In complex III, the phosphorus and gold atoms are also coordinated in the tetrahedral and square environments; the ylide carbon atom is located at the gold atom in the trans-position relative to chlorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Janiak, C., Dalton Trans., 2003, no. 14, p. 2781. https://doi.org/10.1039/B305705B

  2. Desiraju, G.R., Angew. Chem., Int. Ed., 2007, vol. 46, no. 44, p. 8342. https://doi.org/10.1002/anie.200700534

    Article  CAS  Google Scholar 

  3. Dunitz, J.D. and Gavezzotti, A., Chem. Soc. Rev., 2009, vol. 38, no. 9, p. 2622. https://doi.org/10.1039/B822963P

    Article  CAS  PubMed  Google Scholar 

  4. Sculfort, S. and Braunstein, P., Chem. Soc. Rev., 2011, vol. 40, no. 5, p. 2741. https://doi.org/10.1039/C0CS00102C

    Article  CAS  PubMed  Google Scholar 

  5. Alkorta, I., Elguero, J., and Frontera, A., Crystals, 2020, vol. 10, no. 3, p. 180. https://doi.org/10.3390/cryst10030180

    Article  CAS  Google Scholar 

  6. Rodina, T.A., Loseva, O.V., and Ivanov, A.V., J. Struct. Chem., 2021, vol. 62, p. 123. https://doi.org/10.1134/S0022476621010157

    Article  CAS  Google Scholar 

  7. Batten, S.R. and Champness, N.R., Phil. Trans. R. Soc. A, 2017, vol. 375, no. 2084, p. 20160032.https://doi.org/10.1098/rsta.2016.0032

  8. Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, no. 6149, ID 1230444. https://doi.org/10.1126/science.1230444

  9. Liu, J., Chen, L., Cui, H., et al., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 6011. https://doi.org/10.1039/C4CS00094C

    Article  CAS  PubMed  Google Scholar 

  10. Liu, J.-Q., Luo, Z.-D., Pan, Y., et al., Coord. Chem. Rev., 2020, vol. 406, p. 213145. https://doi.org/10.1016/j.ccr.2019.213145

    Article  CAS  Google Scholar 

  11. Baranov, A.Yu., Rakhmanova, M.I., Samsonenko, D.G., et al., Inorg. Chim Acta, 2019, vol. 494, p. 78. https://doi.org/10.1016/j.ica.2019.05.015

    Article  CAS  Google Scholar 

  12. Petrovskii, S.K., Paderina, A.V., Sizova, A.A., et al., Dalton Trans., 2020, vol. 49, no. 38, p. 13430. https://doi.org/10.1039/D0DT02583F

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, K., Stefañczyk, O., Chorazy, S., et al., Inorg. Chem., 2019, vol. 58, no. 9, p. 5677. https://doi.org/10.1021/acs.inorgchem.8b03634

    Article  CAS  PubMed  Google Scholar 

  14. Nicholas, A.D., Bullard, R.M., Pike, R.D., and Patterson, H., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 7, p. 956. https://doi.org/10.1002/ejic.201801407

    Article  CAS  Google Scholar 

  15. Belyaev, A., Eskelinen, T., Dau, T., et al., Chem.-Eur. J., 2017, vol. 24, no. 6, p. 1404. https://doi.org/10.1002/chem.201704642

    Article  CAS  PubMed  Google Scholar 

  16. Ovens, J.S., Christensen, P.R., and Leznoff, D.B., Chem.-Eur. J., 2016, vol. 22, no. 24, p. 8234. https://doi.org/10.1002/chem.201505075

    Article  CAS  PubMed  Google Scholar 

  17. Ovens, J.S., Geisheimer, A.R., Bokov, A.A., et al., Inorg. Chem., 2010, vol. 49, no. 20, p. 9609. https://doi.org/10.1021/ic101357y

    Article  CAS  PubMed  Google Scholar 

  18. Katz, M.J. and Leznoff, D.B., J. Am. Chem. Soc., 2009, vol. 131, no. 51, p. 18435. https://doi.org/10.1021/ja907519c

    Article  CAS  PubMed  Google Scholar 

  19. Thompson, J.R., Goodman-Rendall, K.A.S., and Leznoff, D.B., Polyhedron, 2016, vol. 108, p. 93. https://doi.org/10.1016/j.poly.2015.12.026

    Article  CAS  Google Scholar 

  20. Lefebvre, J., Korčok, J.L., Katz, M.J., and Leznoff, D.B., Sensors, 2012, vol. 12, no. 3, p. 3669. https://doi.org/10.3390/s120303669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varju, B.R., Ovens, J.S., and Leznoff, D.B., Chem. Commun., 2017, vol. 53, no. 48, p. 6500. https://doi.org/10.1039/C7CC03428H

    Article  CAS  Google Scholar 

  22. Ovens, J.S. and Leznoff, D.B., Chem. Mater., 2015, vol. 27, no. 5, p. 1465. https://doi.org/10.1021/cm502998w

    Article  CAS  Google Scholar 

  23. Ovens, J.S. and Leznoff, D.B., Inorg. Chem., 2017, vol. 56, no. 13, p. 7332. https://doi.org/10.1021/acs.inorgchem.6b03153

    Article  CAS  PubMed  Google Scholar 

  24. Ovens, J.S. and Leznoff, D.B., CrystEngComm, 2018, vol. 20, no. 13, p. 1769. https://doi.org/10.1039/C7CE02167D

    Article  CAS  Google Scholar 

  25. Lefebvre, J., Chartrand, D., and Leznoff, D.B., Polyhedron, 2007, vol. 26, nos. 9−11, p. 2189. https://doi.org/10.1016/j.poly.2006.10.045

    Article  CAS  Google Scholar 

  26. Lefebvre, J., Tyagi, P., Trudel, S., et al., Inorg. Chem., 2009, vol. 48, no. 1, p. 55. https://doi.org/10.1021/ic801094m

    Article  CAS  PubMed  Google Scholar 

  27. Geisheimer, A.R., Huang, W., Pacradouni, V., et al., Dalton Trans., 2011, vol. 40, no. 29, p. 7505. https://doi.org/10.1039/C0DT01546F

  28. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., and Efremov, A.N., Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, p. 169. https://doi.org/10.1134/S0036023620020151

    Article  CAS  Google Scholar 

  29. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Eltsov, O.S., Russ. J. Coord. Chem., 2020, vol. 46, no. 9, p. 631. https://doi.org/10.1134/S1070328420090031

    Article  CAS  Google Scholar 

  30. Sharutin, V.V., Bull. South Ural State Univ., Ser. Chem., 2020, vol. 12, no. 2, p. 74. https://doi.org/10.14529/chem200208

    Article  Google Scholar 

  31. Sharutin, V.V., Sharutina, O.K., Tarasova, N.M., et al., Russ. Chem. Bull., 2020, vol. 69, no. 10, p. 1892. https://doi.org/10.1007/s11172-020-2975-4

    Article  CAS  Google Scholar 

  32. Efremov, A.N., Sharutin, V.V., Sharutina, O.K., et al., Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Tekhnol., 2020, vol. 63, no. 3, p. 10. https://doi.org/10.6060/ivkkt.20206303.6097

    Article  CAS  Google Scholar 

  33. Shevchenko, D.P. and Khabina, A.E., Bull. South Ural State Univ. Ser. Chem., 2021, vol. 13, no. 1, p. 58. https://doi.org/10.14529/chem210106

    Article  Google Scholar 

  34. Johnson, A., Doctoral Thesis, Zaragoza: Zaragoza University, 2018, p. 401.

  35. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Madison: Bruker AXS Inc., 1998.

  36. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Madison: Bruker AXS Inc., 1998.

  37. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  38. Vicente, J. and Chicote, M.T., Coord. Chem. Rev., 1999, vols. 193–195, p. 1143. https://doi.org/10.1016/S0010-8545(99)00083-1

    Article  Google Scholar 

  39. Djordjevic, B., Schuster, O., and Schmidbaur, H., Z. Naturforsch., A: Phys. Sci., 2005, vol. 60, no. 2, p. 169. https://doi.org/10.1039/C3CY00240C

    Article  CAS  Google Scholar 

  40. Ahlsten, N., Perry, G.J.P., Cambeiro, X.C., et al., Catal. Sci. Technol., 2013, vol. 3, no. 11, p. 2892. https://doi.org/10.1515/znb-2005-0207

  41. Pretsch, E., Bühlmann, P., Affolter, C., Structure Determination of Organic Compounds. Tables of Spectral Data, Berlin: Springer, 2000.

    Book  Google Scholar 

  42. Cordero, B., Gómez, V., Platero-Prats, A.E., et al., Dalton Trans., 2008, no. 21, p. 2832. https://doi.org/10.1039/B801115J

  43. Johnson, A., Marzo, I., and Gimeno, M.C., Chem.-Eur. J., 2018, no. 45, p. 11693. https://doi.org/10.1002/chem.201801600

  44. Mantina, M., Chamberlin, A.C., Valero, R., et al., J. Phys. Chem. A, 2009, vol. 113, no. 19, p. 5806. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, D.P., Khabina, A.E., Sharutin, V.V. et al. Synthesis and Structure of Gold Complexes [Ph3PR][Au(CN)2Cl2] (R = CH2CH=CHCH3, CH2CN) and Ph3PC(H)(CN)Au(CN)2Cl. Russ J Coord Chem 48, 26–32 (2022). https://doi.org/10.1134/S1070328422010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328422010055

Keywords:

Navigation