Skip to main content

Metal Complexes of Aroyl(acyl)benzoylhydrazones of Aromatic Aldehydes and Ketones: Coordination Modes and Properties

Abstract

The data based on the X-ray diffraction analysis results obtained within the recent 20 years about the coordination modes of aroyl(acyl)hydrazones of aldehydes and ketones containing chelatophoric groups of atoms and their photoluminescence and magnetic properties and biological activity are reviewed and generalized. The most significant earlier studies of the metal complexes with the aroyl(acyl)hydrazone ligands are also considered. This review is fruitful for researchers specialized in the target synthesis of new metal complexes of the ligands of this class aimed at manufacturing practically important materials based on these complexes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.

REFERENCES

  1. Rollas, S. and Küçükgüzel, S.G., Molecules, 2007, vol. 12, no. 8, p. 1910. https://doi.org/10.3390/12081910

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Wang, O., Pan, Y., Wang, J., et al., African J. Biotec., 2011, vol. 10, no. 78, p. 18013. https://doi.org/10.5897/AJB10.2501

    CAS  Article  Google Scholar 

  3. Xia, L.X., Xia, Y.F., Huang, L.R., et al., Eur. J. Med. Chem., 2015, vol. 97, p. 83. https://doi.org/10.1016/j.ejmech.2015.04.042

    CAS  Article  PubMed  Google Scholar 

  4. Nurkenov, O.A., Satpaeva, Z.B., Schepetkin, I.A., et al., Russ. J. Gen. Chem., 2017, vol. 87, p. 2299. https://doi.org/10.1134/S1070363217100097

    CAS  Article  Google Scholar 

  5. Raju, V.V., Balasubramanian, P.K., and Chinnusamy, V., Asian J. Chem., 2010, vol. 22, no. 9, p. 7318.

    CAS  Google Scholar 

  6. Ferraz, K.S.O., Silva, N.F., Silva, J.G., et al., Eur. J. Org. Chem., 2012, vol. 53, p. 98. https://doi.org/10.1016/j.ejmech.2012.03.040

    CAS  Article  Google Scholar 

  7. Singh, V.P., Singh, S., and Katiyar, A., J. Enz. Inhib. Med. Chem., 2009, vol. 24, no. 2, p. 577. https://doi.org/10.1080/14756360802318662

    CAS  Article  Google Scholar 

  8. Küçük, H.B., Mataraci, E., and Çelik, B.Ö., Turkish J. Chem., 2015, vol. 1, no. 1, p. 1. https://doi.org/10.3906/kim-1502-122

    CAS  Article  Google Scholar 

  9. Lisina, S.V., Brel’, A.K., Mazanova, L.S., et al., Pharm. Chem. J., 2008, vol. 42, no. 10, p. 574. https://doi.org/10.1007/s11094-009-0184-4

    CAS  Article  Google Scholar 

  10. El-Gammal, O.A., Rakha, T.H., Metwally, H.M., et al., Spectrochim. Acta Mol. Biomol. Spectrosc., 2014, vol. 127, p. 144. https://doi.org/10.1016/j.saa.2014.02.008

    CAS  Article  Google Scholar 

  11. Badiger, D.S., Hunoor, R.S., Patil, B.R., et al., J. Mol. Struct., 2012, vol. 1019, p. 159. https://doi.org/10.1016/j.molstruc.2012.02.062

    CAS  Article  Google Scholar 

  12. Singh, V.P., Singh, S., and Singh, D.P., J. Enzym. Inhib., 2012, vol. 27, p. 319. https://doi.org/10.3109/14756366.2011.588228

    CAS  Article  Google Scholar 

  13. Abd El-Hady, M.N., Zaky, R.R., Ibrahim, K.M., et al., J. Mol. Struct., 2012, vol. 1016, p. 169. https://doi.org/10.1016/j.molstruc.2012.02.006

    CAS  Article  Google Scholar 

  14. Singh, V.P. and Gupta, P., J. Enzym. Inhib., 2008, vol. 23, p. 797. https://doi.org/10.1080/14756360701733136

    CAS  Article  Google Scholar 

  15. Mohan, M., Gupta, N.S., Gupta, M.P., et al., Inorg. Chim. Acta, 1988, vol. 152, no. 1, p. 25. https://doi.org/10.1016/s0020-1693(00)90726-6

    CAS  Article  Google Scholar 

  16. Kaplanek, R., Havlík, M., Dolenský, B., et al., Bioorg. Med. Chem., 2015, vol. 23, p. 1651. https://doi.org/10.1016/j.bmc.2015.01.029

    CAS  Article  PubMed  Google Scholar 

  17. Hunoor, R.S., Patil, B.R., Badiger, D.S., et al., Appl. Organomet. Chem., 2015, vol. 29, p. 101. https://doi.org/10.1002/aoc.3252

    CAS  Article  Google Scholar 

  18. Bakale, R.P., Pathan, A.H., Naik, G.N., et al., Appl. Organomet. Chem., 2014, vol. 28, p. 720. https://doi.org/10.1002/aoc.3190

    CAS  Article  Google Scholar 

  19. Tan, S.J., Sk, M.A., Lee, P.P.F., et al., Can. J. Chem., 2012, vol. 90, no. 9, p. 762. https://doi.org/10.1139/v2012-053

    CAS  Article  Google Scholar 

  20. Backes, G.L., Neuman, D.M., and Jursic, B.S., Bioorg. Med. Chem., 2014, vol. 22, no. 17, p. 4629. https://doi.org/10.1016/j.bmc.2014.07.022

    CAS  Article  PubMed  Google Scholar 

  21. Ainscough, E.W., Brodie, A.M., Denny, W.A., et al., J. Inorg. Biochem., 1999, vol. 77, nos. 3–4, p. 125. https://doi.org/10.1016/s0162-0134(99)00131-2

    CAS  Article  PubMed  Google Scholar 

  22. Rao, S.N., Munshi, K.N., and Rao, N.N., J. Mol. Catal. A: Chem., 2000, vol. 156, nos. 1–2, p. 205. https://doi.org/10.1016/s1381-1169(99)00413-6

    CAS  Article  Google Scholar 

  23. Sutradhar, M., Martins, L.M.D.R.S., Guedes Da Silva, M.F.C., et al., Appl. Catal., A, 2015, vol. 493, p. 50. https://doi.org/10.1016/j.apcata.2015.01.005

  24. Clark, J. and Macquarrie, D., Handbook of Green Chemistry and Technology, Oxford: Backwell, 2002.

    Book  Google Scholar 

  25. Shilov, A.E. and Shul’pin, G.B., Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Dordrecht: Kluwer Academic, 2000.

    Google Scholar 

  26. Pombeiro, A.J.L., in Advances in Organometallic Chemistry and Catalysis, Pombeiro, A.J.L., Ed., Hoboken: Wiley, 2013, Ch. 2, p. 15.

    Book  Google Scholar 

  27. Gruenwald, K.R., Kirillov, A.M., Haukka, M., et al., Dalton Trans., 2009, p. 2109. https://doi.org/10.1039/b813160k

  28. Kirillova, M.V., Kirillov, A.M., Martins, A.N.C., et al., Inorg. Chem., 2012, vol. 51, p. 5224. https://doi.org/10.1021/ic300123d

    CAS  Article  PubMed  Google Scholar 

  29. Schuchardt, U., Cardoso, D., Sercheli, R., et al., Appl. Catal., A, 2001, vol. 211, p. 1. https://doi.org/10.1016/S0926-860X(01)00472-0

  30. Shul’pin, G.B., Kozlov, Y.N., Shul’pina, L.S., et al., Appl. Organomet. Chem., 2010, vol. 24, p. 464. https://doi.org/10.1002/aoc.1641

    CAS  Article  Google Scholar 

  31. Martins, L.M.D.R., in Advances in Organometallic Chemistry and Catalysis, Pombeiro, A.J.L., Ed., Weinheim: Wiley, 2013, Ch. 22, p. 285.

    Google Scholar 

  32. Martins, L.M.D.R.S. and Pombeiro, A.J.L., Coord. Chem. Rev., 2014, vol. 265, p. 74. https://doi.org/10.1016/j.ccr.2014.01.013

    CAS  Article  Google Scholar 

  33. Jaiswal, V., Gupta, S.R., Rastogi, R.B., et al., J. Mater. Chem. A, 2015, vol. 3, no. 9, p. 5092. https://doi.org/10.1039/c4ta05663a

    CAS  Article  Google Scholar 

  34. Rastogi, R.B., Maurya, J.L., and Jaiswal, V., Tribol. Trans., 2013, vol. 56, p. 592. https://doi.org/10.1080/10402004.2012.748115

    CAS  Article  Google Scholar 

  35. Wan, Y., Liu, W.M., and Xue, Q., Lubr. Sci., 1995, vol. 7, p. 187. https://doi.org/10.1002/ls.3010070208

    CAS  Article  Google Scholar 

  36. Rastogi, R.B., Maurya, J.L., and Jaiswal, V., Wear, 2013, vol. 297, p. 849. https://doi.org/10.1016/j.wear.2012.10.003

    CAS  Article  Google Scholar 

  37. Kogan, V.A. and Lukov, V.V., Russ. J. Coord. Chem., 1997, vol. 23, no. 1, p. 18.

    Google Scholar 

  38. Popov, L.D., Tupolova, Y.P., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2007, vol. 33, p. 208. https://doi.org/10.1134/S1070328407030098

    CAS  Article  Google Scholar 

  39. Tupolova, Y.P., Popov, L.D., Lukov, V.V., et al., Anorg. Allg. Chem., 2009, vol. 635, no. 3, p. 530. https://doi.org/10.1002/zaac.200801299

    CAS  Article  Google Scholar 

  40. Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2019, vol. 45, p. 163.

    CAS  Article  Google Scholar 

  41. Zhang, K., Guo, F.S., and Wang, Y.Y., Inorg. Chem. Commun., 2017, vol. 76, p. 95. https://doi.org/10.1016/j.inoche.2017.01.005

    CAS  Article  Google Scholar 

  42. Le Guennic, B., Petit, S., Chastanet, G., et al., Inorg. Chem., 2008, vol. 47, p. 572. https://doi.org/10.1021/ic701758x

    CAS  Article  Google Scholar 

  43. Gautier-Luneau, I., Phanon, D., Duboc, C., et al., Dalton Trans., 2005, p. 3795. https://doi.org/10.1039/b506934c

  44. Rigamonti, L., Cinti, A., Forni, A., et al., Eur. J. Inorg. Chem., 2008, p. 3633. https://doi.org/10.1002/ejic.200800372

  45. Anwar, M.U., Thompson, L.K., and Dawe, L.N., Dalton Trans., 2011, vol. 40, p. 1437. https://doi.org/10.1039/c0dt01606c

    CAS  Article  PubMed  Google Scholar 

  46. Köhn, R.D., Laudo, L.T., Pan, Z., et al., Dalton Trans., 2009, p. 4556. https://doi.org/10.1039/b819268e

  47. Gusev, A.N., Braga, E.V., Kryukova, M.A., et al., Russ. J. Coord. Chem., 2020, vol. 46, p. 251. https://doi.org/10.1134/S107032842004003X

    CAS  Article  Google Scholar 

  48. Utochnikova, V.V., Kovalenko, A.D., Burlov, A.S., et al., Dalton Trans., 2015, vol. 44, no. 28, p. 12660. https://doi.org/10.1039/c5dt01161b

    CAS  Article  PubMed  Google Scholar 

  49. Kovalenko, A.D., Bushmarinov, I.S., Burlov, A.S., et al., Dalton Trans., 2018, vol. 47, p. 4524. https://doi.org/10.1039/c7dt04387b

    CAS  Article  PubMed  Google Scholar 

  50. Kovalenko, A.D., Rublev, P.O., Tcelykh, L.O., et al., Chem. Mater., 2019, vol. 31, p. 759. https://doi.org/10.1021/acs.chemmater.8b03675

    CAS  Article  Google Scholar 

  51. Popov, L.D., Tkachev, V.V., Tupolova, Y.P., et al., Russ. J. Inorg. Chem., 2017, vol. 62, no. 7, p. 893. https://doi.org/10.1134/S003602361707018X

    CAS  Article  Google Scholar 

  52. Levchenkov, S.I., Popov, L.D., Scherbakov, I.N., et al., Russ. J. Gen. Chem., 2016, vol. 86, no. 5, p. 1064. https://doi.org/10.1134/S1070363216050133

    CAS  Article  Google Scholar 

  53. Popov, L.D., Tupolova, Yu.P., Levchenkov, S.I., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 8, p. 1902. https://doi.org/10.1134/S1070363215080186

    CAS  Article  Google Scholar 

  54. Popov, L.D., Morozov, A.N., Raspopova, E.A., et al., Russ. J. Gen. Chem., 2015, vol. 85, no. 1, p. 126. https://doi.org/10.1134/S1070363215010223

    CAS  Article  Google Scholar 

  55. Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 5, p. 367. https://doi.org/10.1134/S107032841304009X

    CAS  Article  Google Scholar 

  56. Popov, L.D., Raspopova, E.A., Morozov, A.N., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 11, p. 806. https://doi.org/10.1134/S1070328414110050

    CAS  Article  Google Scholar 

  57. Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2011, vol. 37, p. 483. https://doi.org/10.1134/S1070328411060078

    CAS  Article  Google Scholar 

  58. Kogan, V.A., Zelentsov, V.V., Gerbeleu, N.V., and Lukov, V.V., Zh. Neorg. Khim., 1986, vol. 31, no. 11, p. 2831.

  59. Nagano, R., Kiroshita, H., and Hirakawa, A., Chem. Pharm. Bull., 1964, vol. 12, p. 1198. https://doi.org/10.1248/cpb.12.1198

    CAS  Article  Google Scholar 

  60. Aggarwal, R.C. and Bahadur, A., Indian J. Chem., 1969, vol. 7, no. 10, p. 1038.

    CAS  Google Scholar 

  61. El Sayed, L. and Iskander, M.F., J. Inorg. Nucl. Chem., 1971, vol. 33, p. 435. https://doi.org/10.1016/0022-1902(71)80386-x

    CAS  Article  Google Scholar 

  62. Iskander, M.F., Zayan, S.E., Khalifa, M.A., and El-Sayed, L., J. Inorg. Nucl. Chem., 1974, vol. 36, no. 3, p. 551. https://doi.org/10.1016/0022-1902(74)80112-0

    CAS  Article  Google Scholar 

  63. Narang, K.K. and Aggarwal, A., Trans. Met. Chem., 1977, vol. 2, no. 1, p. 29. https://doi.org/10.1007/bf01402673

    CAS  Article  Google Scholar 

  64. Gogoshvili, P.V., Karkarashvili, M.V., and Kalandarashvili, D.Z., Zh. Neorg. Khim., 1969, vol. 14, no. 6, p. 1516.

    Google Scholar 

  65. Rastogi, D.K., Pachauri, P.C., Rana, V.B., et al., Acta Chim. Acad. Sci. Hungar., 1977, vol. 95, nos. 2−3, p. 223.

    CAS  Google Scholar 

  66. Iskander, M.F., El-Sayed, L., Saddeck, S., et al., Trans. Met. Chem., 1980, vol. 5, no. 1, p. 168. https://doi.org/10.1007/bf01396903

    CAS  Article  Google Scholar 

  67. Zou, L.F., Yang, X.Y., Wang, D.X., et al., Asian J. Chem., 2012, vol. 24, p. 2909.

    CAS  Google Scholar 

  68. Biradar, N.S., Mahale, V.B., and Havinale, B.R., Curr. Sci., 1976, vol. 45, no. 1, p. 6. https://www.jstor.org/ stable/24215120.

    CAS  Google Scholar 

  69. Jahagirdar, J.A., Patil, B.G., and Havinale, B.R., Indian J. Chem. A., 1991, vol. 30, no. 5, p. 471. http://nopr.niscair.res.in/handle/123456789/41894.

  70. Syamal, A. and Gurta, B.K., Rev. Roum. Chim., 1982, vol. 45, no. 8, p. 927.

    Google Scholar 

  71. Issa, R.M., El-Shazly, M.F., Iskander, M.F., et al., Anorg. Allg. Chem., 1967, vol. 354, nos. 1–2, p. 90. https://doi.org/10.1002/zaac.19673540118

    CAS  Article  Google Scholar 

  72. Aruffo, A.A., Murphy, T.B., Johnson, D.K., et al., Inorg. Chim. Acta, 1982, vol. 67, no. 4, p. L25. https://doi.org/10.1016/S0020-1693(00)85021-5

    CAS  Article  Google Scholar 

  73. Aruffo, A.A., Murphy, T.B., Johnson, D.K., et al., Acta Crystallogr., Sect. C: Cryst. Struct. Comm., 1984, vol. 40, no. 7, p. 1164. https://doi.org/10.1107/s0108270184007198

    Article  Google Scholar 

  74. Levchenkov, S.I., Shcherbakov, I.N., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 1997, vol. 23, no. 4, p. 271.

    CAS  Google Scholar 

  75. Levchenkov, S.I., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 1997, vol. 23, no. 5, p. 349.

    CAS  Google Scholar 

  76. Lukov, V.V., Levchenkov, S.I., Shcherbakov, I.N., and Kogan, V.A., Russ. J. Coord. Chem., 1997, vol. 23, no. 7, p. 507.

    CAS  Google Scholar 

  77. Biradar, N.S. and Havinale, B.R., Inorg. Chim. Acta, 1976, vol. 17, p. 157. https://doi.org/10.1016/s0020-1693(00)81975-1

    CAS  Article  Google Scholar 

  78. Koh, L.L., Kon, O.L., Loh, K.W., et al., J. Inorg. Biochem., 1998, vol. 72, p. 155. https://doi.org/10.1016/s0162-0134(98)10075-2

    CAS  Article  PubMed  Google Scholar 

  79. Syamal, A. and Kale, K.S., Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 1978, vol. 16, no. 1, p. 46.

    Google Scholar 

  80. Rastogi, D.K., Dua, S.K., and Sahni, S.K., J. Inorg. Nucl. Chem., 1980, vol. 42, no. 3, p. 323. https://doi.org/10.1016/0022-1902(80)80002-9

    CAS  Article  Google Scholar 

  81. Rastogi, D.K., Sahni, S.K., Rana, V.B., et al., J. Inorg. Nucl. Chem., 1979, vol. 41, no. 1, p. 21. https://doi.org/10.1016/0022-1902(79)80386-3

    CAS  Article  Google Scholar 

  82. Rastogi, D.K., Sahni, S.K., Rana, V.B., et al., J. Coord. Chem., 1978, vol. 8, no. 2, p. 97. https://doi.org/10.1080/00958977808073078

    CAS  Article  Google Scholar 

  83. Tupolova, Yu.P., Lukov, V.V., Kogan, V.A., et al., Russ. J. Coord. Chem., 2007, vol. 33, no. 4, p. 301. https://doi.org/10.1134/s1070328407040112

    CAS  Article  Google Scholar 

  84. Lukov, V.V., Knysh, A.A., Lyubchenko, S.N., et al., Russ. J. Coord. Chem., 2002, vol. 28, no. 12, p. 874. https://doi.org/10.1023/A:1021642530810

    CAS  Article  Google Scholar 

  85. Lukov, V.V., Tupolova, Yu.P., Kogan, V.A., et al., Russ. J. Coord. Chem., 2003, vol. 29, no. 5, p. 335. https://doi.org/10.1023/a:1023675801876

    CAS  Article  Google Scholar 

  86. Repich, H.H., Orysyk, S.I., Orysyk, V.V., et al., J. Mol. Struct., 2017, vol. 1146, p. 222. https://doi.org/10.1016/j.molstruc.2017.05.140

    CAS  Article  Google Scholar 

  87. Alagesan, M., Bhuvanesh, N.S.P., and Dharmaraj, N., Eur. J. Med. Chem., 2014, vol. 78, p. 281. https://doi.org/10.1016/j.ejmech.2014.03.043

    CAS  Article  PubMed  Google Scholar 

  88. Popov, L.D., Tupolova, Y.P., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2007, vol. 33, no. 3, p. 208. https://doi.org/10.1134/s1070328407030098

    CAS  Article  Google Scholar 

  89. Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493. https://doi.org/10.1134/S1070363210030217

    CAS  Article  Google Scholar 

  90. Burlov, A.S., Garnovskii, A.D., Alekseenko, V.A., et al., Koord. Khim., 1992, vol. 18, no. 8, p. 859.

    CAS  Google Scholar 

  91. Levchenkov, S.I., Lukov, V.V., Kogan, V.A., and Anisimova, B.A., Russ. J. Coord. Chem., 1997, vol. 23, no. 3, p. 163.

    CAS  Google Scholar 

  92. Lukov, V.V., Kogan, V.A., Epifantsev, A.P., et al., Zh. Neorg. Khim., 1990, vol. 35, no. 5, p. 1336.

  93. Lukov, V.V., Kogan, V.A., Bogatyreva, E.V, et al., Zh. Neorg. Khim., 1989, vol. 34, no. 10, p. 2554.

    CAS  Google Scholar 

  94. Dash, S.P., Pasayat, S., Bhakat, S., et al., Inorg. Chem., 2013, vol. 52, no. 24, p. 14096. https://doi.org/10.1021/ic401866x

    CAS  Article  PubMed  Google Scholar 

  95. Mishra, M., Tiwari, K., Singh, A.K., et al., Polyhedron, 2014, vol. 77, p. 57. https://doi.org/10.1016/j.poly.2014.04.003

    CAS  Article  Google Scholar 

  96. Sutradhar, M., Mukherjee, G., Drew, M.G.B., et al., Inorg. Chem., 2006, vol. 45, no. 13, p. 5150. https://doi.org/10.1021/ic051120g

    CAS  Article  PubMed  Google Scholar 

  97. Dinda, R., Ghosh, S., Falvello, L.R., et al., Polyhedron, 2006, vol. 25, no. 12, p. 2375. https://doi.org/10.1016/j.poly.2006.02.002

    CAS  Article  Google Scholar 

  98. Rao, S.N., Munshi, K.N., and Rao, N.N., J. Mol. Catal. A: Chem., 1999, vol. 145, nos. 1–2, p. 203. https://doi.org/10.1016/s1381-1169(99)00023-0

    CAS  Article  Google Scholar 

  99. Rao, S.N., Munshi, K.N., Rao, N.N., et al., Polyhedron, 1999, vol. 18, no. 19, p. 2491. https://doi.org/10.1016/s0277-5387(99)00139-4

    CAS  Article  Google Scholar 

  100. Ming La, Pan-Pan Wang, and Ling-Wei Xue, Inorg. Nano-Met. Chem., 2020, vol. 50, p. 151. https://doi.org/10.1080/24701556.2019.1694038

    CAS  Article  Google Scholar 

  101. Song-Zhu Lin, Ruo-Kun Jia, Yan-Lin Yuan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, vol. 65, no. 11, p. m1422. https://doi.org/10.1107/S1600536809042810

    CAS  Article  Google Scholar 

  102. Li, P., Li, D., and Shi, X., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, vol. 65, no. 7, p. m738. https://doi.org/10.1107/S1600536809020546

    CAS  Article  Google Scholar 

  103. Dong Yan Xu, Ying Liu, Ming Li Liu, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, no. 4, p. m671. https://doi.org/10.1107/S1600536806006696

    CAS  Article  Google Scholar 

  104. Zhao, S., Li, L., Liu, X., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2012, vol. 68, no. 9, p. m1216. https://doi.org/10.1107/S1600536812036100

    CAS  Article  Google Scholar 

  105. Sutradhar, M., Rajeshwari, Barman, T.R., et al., J. Inorg. Biochem., 2017, vol. 175, p. 267. https://doi.org/10.1016/j.jinorgbio.2017.07.034

    CAS  Article  PubMed  Google Scholar 

  106. Liu, H., Lu, Z., and Niu, D., Coord. Chem., 2008, vol. 61, no. 24, p. 4040. https://doi.org/10.1080/00958970802213476

    CAS  Article  Google Scholar 

  107. Borbone, F., Caruso, U., Concilio, S., et al., Eur. J. Inorg. Chem., 2016, vol. 2016, no. 6, p. 818. https://doi.org/10.1002/ejic.201501132

    CAS  Article  Google Scholar 

  108. Borbone, M.A.F., Caruso, U., Causà, M., et al., Eur. J. Inorg. Chem., 2014, vol. 2014, no. 34, p. 5916. https://doi.org/10.1002/ejic.201402717

    CAS  Article  Google Scholar 

  109. Xue, L.W., Zhang, H.J., and Wang, P.P., Acta Chim. Slov., 2019, vol. 66, no. 1, p. 190. https://doi.org/10.17344/acsi.2018.4773

    CAS  Article  PubMed  Google Scholar 

  110. Ling-Wei Xue, Hui-Jie Zhang, and Pan-Pan Wang, Acta Chim. Slov., 2019, vol. 66, p. 190.

    CAS  Article  Google Scholar 

  111. Wu, Y., Shi, H.M., Jia, B., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, no. 3, p. m648. https://doi.org/10.1107/S160053680600657X

    CAS  Article  Google Scholar 

  112. Xiao-Hua Chen, Qiong-Jie Wu, Zhi-Yu Liang, et al., Acta Crystallogr., Sect. C: Cryst. Sruct. Commun., 2009, vol. 65, p. m190. https://doi.org/10.1107/S0108270109011263

    CAS  Article  Google Scholar 

  113. Jin-Shang Huang and Ming-Tian Li, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, p. m2170. https://doi.org/10.1107/S1600536807024944

    CAS  Article  Google Scholar 

  114. Zhong-Qiu Hu, Shao-Min Shi, Hong-Wu He, et al., Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.), 2007, vol. 23, p. 323.

  115. Huang, J.S. and Li, M.T., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, no. 8, p. m2170. https://doi.org/10.1107/S1600536807024944

    CAS  Article  Google Scholar 

  116. Yu, Z.X., Qi, J.S., Liang, K.Z., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, vol. 62, no. 12, p. m3284. https://doi.org/10.1107/S1600536806046745

    CAS  Article  Google Scholar 

  117. Hu, Z.Q., Li, W.H., Ding, Y., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, vol. 61, no. 12. m2526. https://doi.org/10.1107/S1600536805035701

    CAS  Article  Google Scholar 

  118. Kara, N.K., Singha, M.K., and Lalb, R.A., Arabian J. Chem., 2017, vol. 10, no. 1, p. 76.

    Article  Google Scholar 

  119. Suganthy, P.K., Prabhu, R.N., and Sridevi, V.S., Polyhedron, 2015, vol. 88, p. 57. https://doi.org/10.1016/j.poly.2014.12.016

    CAS  Article  Google Scholar 

  120. Li-Hang Wang, Xiao-Yang Qiu, et al., J. Coord. Chem., 2019, vol. 72, nos. 5–7, p. 962. https://doi.org/10.1080/00958972.2019.1590561

    CAS  Article  Google Scholar 

  121. Zhang, S.P., Wei, Y., and Shao, S.C., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, no. 12. m1635. https://doi.org/10.1107/S1600536810047719

    CAS  Article  Google Scholar 

  122. Hatefi, M., Sheikhshoaie, I., Moghadam, M., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2010, vol. 66, no. 7. m726. https://doi.org/10.1107/S1600536810019902

    CAS  Article  Google Scholar 

  123. Zhang, K., Guo, F.S., and Wang, Y.Y., Inorg. Chem. Commun., 2017, vol. 76, p. 95. https://doi.org/10.1016/j.inoche.2017.01.005

    CAS  Article  Google Scholar 

  124. Costes, J.P., Duhayon, C., and Vendier, L., Inorg. Chem., 2014, vol. 53, no. 4, p. 2181. https://doi.org/10.1021/ic4027283

    CAS  Article  PubMed  Google Scholar 

  125. Sutradhar, M., Martins, L.M.D.R.S., Guedes Da Silva, M.F.C., et al., Eur. J. Inorg. Chem., 2015, p. 3959. https://doi.org/10.1002/ejic.201500440

  126. Sutradhar, M., Alegria, E.C.B.A., Mahmudov, K.T., et al., RSC Adv., 2016, vol. 6, p. 8079. https://doi.org/10.1039/c5ra25774c

    CAS  Article  Google Scholar 

  127. Kumar, M., Roy, S., Md. Faizi, S.H., Kumar, S., et al., J. Mol. Struct., 2017, vol. 1128, p. 195. https://doi.org/10.1016/j.molstruc.2016.08.004

    CAS  Article  Google Scholar 

  128. Burlov, A.S., Zaichenko, S.B., Popov, L.D., et al., Russ. J. Gen. Chem., 2019, vol. 89, no. 4, p. 727. https://doi.org/10.1134/S1070363219040157

    CAS  Article  Google Scholar 

  129. Schleife, F., Rodenstein, A., Kirmse, R., et al., Inorg. Chim. Acta, 2011, vol. 374, no. 1, p. 521. https://doi.org/10.1016/j.ica.2011.02.064

    CAS  Article  Google Scholar 

  130. Paolucci, G., Stelluto, S., Sitran, S., et al., Inorg. Chim. Acta, 1992, vol. 193, no. 1, p. 57. https://doi.org/10.1016/S0020-1693(00)83797-4

    CAS  Article  Google Scholar 

  131. Koziol, A.E., Palenik, R.C., Palenik, G.J., and Wester, D.W., Inorg. Chim. Acta, 2006, vol. 359, no. 8, p. 259. https://doi.org/10.1016/j.ica.2006.01.042

    CAS  Article  Google Scholar 

  132. Danilescu, O., Bulhac, I., Shova, S., et al., Russ. J. Coord. Chem., 2020, vol. 46, no. 12, p. 838. https://doi.org/10.1134/S1070328420090018

    CAS  Article  Google Scholar 

  133. Robson, R., Aust. J. Chem., 1970, vol. 23, no. 11, p. 2217. https://doi.org/10.1071/CH9702217c

    CAS  Article  Google Scholar 

  134. Tamboura, F.B., Diouf, O., Barry, A.H., et al., Polyhedron, 2012, vol. 43, no. 1, p. 97. https://doi.org/10.1016/j.poly.2012.06.025

    CAS  Article  Google Scholar 

  135. Beloborodov, S.S., Levchenkov, S.I., Popov, L.D., et al., Mendeleev Commun., 2014, vol. 24, no. 4, p. 219. https://doi.org/10.1016/j.mencom.2014.06.010

    CAS  Article  Google Scholar 

  136. Popov, L.D., Morozov, A.N., Shcherbakov, I.N., et al., Russ. Chem. Rev., 2009, vol. 78, no. 7, p. 643. https://doi.org/10.1070/RC2009v078n07ABEH003890

    CAS  Article  Google Scholar 

  137. Lukov, V.V., Tsaturyan, A.A., Tupolova, Yu.P., et al., Mendeleev Commun., 2019, vol. 29, no. 1, p. 43. https://doi.org/10.1016/j.mencom.2019.01.013

    CAS  Article  Google Scholar 

  138. Levchenkov, S.I., Popov, L.D., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 7, p. 493. https://doi.org/10.1134/S107032841307004X

    CAS  Article  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation, state task in the field of scientific activity, Southern Federal University, 2020, project FENW-2020-0031 (0852-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Burlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burlov, A.S., Vlasenko, V.G., Chal’tsev, B.V. et al. Metal Complexes of Aroyl(acyl)benzoylhydrazones of Aromatic Aldehydes and Ketones: Coordination Modes and Properties. Russ J Coord Chem 47, 439–472 (2021). https://doi.org/10.1134/S1070328421070010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421070010

Keywords:

  • aroyl(acyl)hydrazones
  • metal complexes
  • molecular structure
  • tautomerism
  • photoluminescence
  • magnetic properties
  • biological activity