Skip to main content
Log in

Tetra-, Penta-, and Hexacoordinate Stereoisomers of the Bis(ligand) Complexes of Zn(II) and Cd(II) Based on (N,O,S(Se))-Tridentate Azomethines. A Quantum Chemical Study

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The molecular structures and relative energies of tetra-, penta-, and hexacoordinate stereoisomers of the Zn(II) and Cd(II) bis(ligand) complexes based on (N,O,Y (Y = S, Se))-tridentate azomethines (coordination nodes of the competing stereoisomers are MN2O2, MN2O2Y, and MN2O2Y2, respectively) are calculated by the density functional theory and nonempirical Hartree–Fock method. The simulation of the mechanism for the formation of the tetra-, penta-, and hexacoordinate stereoisomers with allowance for the subsequent stereoisomerization makes it possible to establish the preferable tetracoordination (as a pseudotetrahedron) for the zinc complexes and penta- or hexacoordination for the cadmium complex depending on the specific features of the ligand structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.I., Coord. Chem. Rev., 1993, vol. 126, no. 1, p. 1.

    Article  CAS  Google Scholar 

  2. Bourget-Merle, L., Lappert, M.F., and Severn, J.R., Chem. Rev., 2002, vol. 102, no. 6, p. 3031.

    Article  Google Scholar 

  3. Garnovskii, A.D., Vasilchenko, I.S., Garnovskii, D.A., and Kharisov, B.I., J. Coord. Chem., 2009, vol. 62, no. 2, p. 151.

    Article  CAS  Google Scholar 

  4. Kharabaev, N.N., Starikov, A.G., and Minkin, V.I., Dokl. Ross. Akad. Nauk, 2014, vol. 458, no. 5, p. 555.

    Google Scholar 

  5. Kharabayev, N.N., Starikov, A.G., and Minkin, V.I., Russ. J. Coord. Chem., 2015, vol. 41, no. 7, p. 421. https://doi.org/10.1134/S1070328415070039

    Article  CAS  Google Scholar 

  6. Kharabayev, N.N., Russ. J. Coord. Chem., 2019, vol. 45, no. 8, p. 673. https://doi.org/10.1134/S1070328419080050

    Article  Google Scholar 

  7. Ali, M.A., Mirza, A.H., and Fong, G.A., Transition Met. Chem., 2004, vol. 29, p. 613.

    CAS  Google Scholar 

  8. Ali, M.A., Bakar, H.J.H.A., Mirza, A.H., et al., Polyhedron, 2008, vol. 27, p. 71.

    Article  CAS  Google Scholar 

  9. Patra, A., Sarkar, S., Chakraborty, R., et al., J. Coord. Chem., 2010, vol. 63, p. 1913.

    Article  CAS  Google Scholar 

  10. Hashimoto, Y., Yashinari, N., Naruse, D., et al., Inorg. Chem., 2013, vol. 52, p. 14368.

    Article  CAS  Google Scholar 

  11. Mirza, A.H., Hamid, M.H.S.A., Aripin, S., et al., Polyhedron, 2014, vol. 74, p. 16.

    Article  CAS  Google Scholar 

  12. Pastor-Medrano, J., Jancik, V., Bernabe-Pabio, E., et al., Inorg. Chim. Acta, 2014, vol. 412, p. 52.

    Article  CAS  Google Scholar 

  13. Patra, C., Bhanja, A.K., Sen, C., et al., RSC Advances, 2016, vol. 6, p. 53378.

    Article  CAS  Google Scholar 

  14. Lee, S.-G., Park, K.-M., Habata, Y., and Lee, S.-S., Inorg. Chem., 2013, vol. 52, p. 8416.

    Article  CAS  Google Scholar 

  15. Li, L., Li, W., Yang, S., et al., J. Coord. Chem., 2013, vol. 66, p. 2948.

    Article  CAS  Google Scholar 

  16. Nogueira, V.S., Bresolin, L., Nather, C., et al., Acta Crystallogr., Sect. E: Crystallogr. Commun., 2015, vol. 71, p. m234.

    Article  CAS  Google Scholar 

  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09. Revision D.01, Wallingford: Gaussian, Inc., 2013.

    Google Scholar 

  18. Parr, R. and Yang, W., Density-Functional Theory of Ato-ms and Molecules, New York: Oxford Univ., 1989.

    Google Scholar 

  19. Becke, A.D., Phys. Rev. A: At., Mol., Opt. Phys., 1988, vol. 38, p. 3098.

    CAS  Google Scholar 

  20. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B: Contens. Matter Mater. Phys., 1988, vol. 37, p. 785.

  21. Burke, K. and Wagner, L.O., Int. J. Quantum Chem., 2013, vol. 113, no. 2, p. 96.

    Article  CAS  Google Scholar 

  22. Tsipis, A.C., Coord. Chem. Rev., 2014, vol. 272, p. 1.

    Article  CAS  Google Scholar 

  23. Zhurko, G.A. and Zhurko, D.A., Chemcraft. Version 1.6. http://www.chemcraftprog.com.

  24. Kharabayev, N.N., Z. Obshch. Khim., 2017, vol. 87, no. 4, p. 756.

    CAS  Google Scholar 

  25. Kharabayev, N.N., Russ. J. Coord. Chem., 2017, vol. 43, no. 12, p. 807. https://doi.org/10.1134/S107032841712003X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is sincerely grateful to Academician of the Russian Academy of Sciences V.I. Minkin for fruitful consultations made in the course of this study.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of state assignment in the sphere of scientific activities (project no. 0852-2020-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kharabayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharabayev, N.N. Tetra-, Penta-, and Hexacoordinate Stereoisomers of the Bis(ligand) Complexes of Zn(II) and Cd(II) Based on (N,O,S(Se))-Tridentate Azomethines. A Quantum Chemical Study. Russ J Coord Chem 47, 155–163 (2021). https://doi.org/10.1134/S1070328421020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328421020020

Keywords:

Navigation