Skip to main content

Coordination Polymer and Monomer with the Cd(NO3)2 Fragment Containing 2-Amino-5-Bromopyridine: Synthesis, Structures, NMR Study, and Luminescence Properties


The reactions of Cd(NO3)2 ⋅ 4H2O with 2-amino-5-bromopyridine (Аbp) afford compounds [Cd(NO3)2(Аbp)(H2O)]n (I) and [Cd(NO3)2(Abp)2(H2O)2] (II). The structures of both complexes are determined by single-crystal X-ray structure analysis (CIF files CCDC nos. 1938624 (I) and 1959680 (II)). Compound I is a coordination 1D polymer in which two chelate-bonded \({\text{NO}}_{3}^{ - }\) groups act as bridges. The coordination polyhedron of the octacoordinated central cadmium atom in compound I consists of seven oxygen atoms (one oxygen atom of water and six atoms of the \({\text{NO}}_{3}^{ - }\) groups) and one nitrogen atom of Abp, being a triangular dodecahedron. Complex II is a mononuclear molecule in which the octahedral coordination polyhedron of Cd is formed by four oxygen atoms of two water molecules and two \({\text{NO}}_{3}^{ - }\) groups and two oxygen atoms of two molecules of the Abp cycle. In both complexes, the amino group of Abp is not involved in coordination with the metal. Compound I is studied by 1H, 31C, and 15N NMR spectroscopy of a solution of the polymer complex in CD3CN, and the most substantial difference in the chemical shifts of the bound and free Abp ligands is observed in the 15N NMR spectra (37 ppm). According to the data of luminescence spectroscopy, compounds I and II exhibit an emission in a range of 430–690 nm.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Ho, C.-L. and Wong, W.-Y., Coord. Chem. Rev., 2011, vol. 255, p. 2469.

    CAS  Article  Google Scholar 

  2. Leong, W.L. and Vittal, J.J., Chem. Rev., 2011, vol. 111, p. 688.

    CAS  Article  Google Scholar 

  3. Koshima, H., Hamada, M., Yagi, I., and Uosaki, K., Cryst. Growth. Des., 2001, vol. 1, p. 467.

    CAS  Article  Google Scholar 

  4. Tomaru, S., Matsumoto, S., Kurihara, T., et al., Appl. Phys. Lett., 1991, vol. 58, p. 2583.

    CAS  Article  Google Scholar 

  5. Luque, A., Sertucha, J., Lesama, L., et al., J. Chem. Soc., Dalton Trans., 1997, p. 847.

  6. Mojdekaulous, S., Khalaji, A.D., and Xu, D., Jpn. Soc. Analyt. Chem., 2007, vol. 23, p. x189.

    Google Scholar 

  7. Zhou, W.-W., Zhao, W., Wei, B., et al., Inorg. Chim. Acta, 2012, vol. 386, p. 17.

    CAS  Article  Google Scholar 

  8. Futriani, Hausongnern, K., Leesakul, N., et al., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, p. m302.

    Article  Google Scholar 

  9. Zhou, W.-W., Zhao, W., Zhao, X., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2013, vol. 43, p. 1171.

    CAS  Article  Google Scholar 

  10. Seth, S.K., CrystEngComm, 2013, vol. 15, p. 1772.

    CAS  Article  Google Scholar 

  11. SMART (control) and SAINT (integration) Software. Version 5.0, Madison: Bruker AXS, Inc., 1997.

  12. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3.

    CAS  Article  Google Scholar 

  13. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

    Article  Google Scholar 

  14. Cirera, J., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2004, vol. 10, p. 190.

    CAS  Article  Google Scholar 

  15. Casanova, D., Llunell, M., Alemany, P., and Alvarez, S., Chem.-Eur. J., 2005, vol. 11, p. 1479.

    CAS  Article  Google Scholar 

  16. Avnir, D., Llunell, M., and Pinsky, M., New J. Chem., 2002, vol. 26, p. 996.

    Article  Google Scholar 

  17. Sakharov, S.G., Kovalev, V.V., Gorbunova, Yu.E., and Kokunov, Yu.V., Russ. J. Coord. Chem., 2013, vol. 39, p. 187.

    CAS  Article  Google Scholar 

  18. Tables of Spectral Data for Structue Determination of Organic Compounds, Berlin: Springer, 1983, p. H275.

  19. Kleywegt, J.G.J., Weismeijer, W.G.R., Van Driel, G.J., et al., J. Chem. Soc., Dalton Trans., 1985, p. 2171.

  20. Chattopadhyay, T., Banerjee, A., Banu, K.S., et al., Polyhedron, 2008, vol. 27, p. 2452.

    CAS  Article  Google Scholar 

  21. Neumann, T., Germann, L.S., Mandrakovski, I., et al., Z. Anorg. Allg. Chem., 2017, vol. 643, p. 1904.

    CAS  Article  Google Scholar 

  22. Fu, Z.-Y., Wu, X.-T., Dai, J.-C., et al., Eur. J. Inorg. Chem., 2002, p. 2730.

  23. Nather, C., Jess, I., Germann, L.S., et al., Eur. J. Inorg.Chem., 2017, p. 1245.

Download references


The compounds were synthesized and studied in the framework of the state task of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the sphere of basic research. The single-crystal X-ray structure analysis, XRD, luminescence studies, and elemental analysis were carried out using the equipment of the Center for Collective Use “Physical Methods of Investigation” at the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences) in the sphere of basic research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The authors congratulate Academician I.L. Eremenko with a 70th birthday

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovalev, V.V., Kokunov, Y.V., Voronina, Y.K. et al. Coordination Polymer and Monomer with the Cd(NO3)2 Fragment Containing 2-Amino-5-Bromopyridine: Synthesis, Structures, NMR Study, and Luminescence Properties. Russ J Coord Chem 46, 420–429 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • coordination polymer
  • molecular complex
  • cadmium nitrate
  • 2-amino-5-bromopyridine
  • structure
  • NMR
  • photoluminescence