Abstract
Complexes CuL1 ⋅ MeOH (Ia), NiL1 ⋅ MeOH (Ib), CоL1 ⋅ MeOH (Ic), CuL2 (IIa), NiL2 (IIb), and CоL2 (IIc) of the tetradentate azomethine compounds, namely, 4-methyl-N-[2-[(E)-2-[2-[2-[(E)-[2-(p-toluenesulfamino)phenyl]methyleneamino]ethoxy]ethyliminomethyl]phenyl]benzenesulfamide (H2L1) and 4-methyl-N-[2-[(E)-3-[4-[3-[(E)-[2-(p-toluenesulfamino)phenyl]methyleneamino]propoxy]butoxy]-propyliminomethyl]phenyl]benzenesulfamide (H2L2), which are the condensation products of 2-(N-tosylamino)benzaldehyde with 3,4-dioxa-1,8-octanediamine and 4,9-dioxa-1,12-dodecanediamine, are synthesized using the chemical and electrochemical methods. The structures, compositions, and properties of the synthesized metal complexes are studied by the methods of elemental analysis, IR spectroscopy, X-ray absorption spectroscopy, magnetochemistry, and X-ray diffraction analysis (СIF files CCDC nos. 1910746 (Ia), 1910747 (Ib), and 1910748 (Ic)). In the molecules of compounds Ia–Ic, the L1 macrocyclic ligand coordinates the metal atom by four nitrogen atoms via the tetradentate chelate mode to form the polyhedron as a distorted tetrahedron.
This is a preview of subscription content, access via your institution.





REFERENCES
- 1
Cozzi, P.G., Chem. Soc. Rev., 2004, vol. 33, p. 410. https://doi.org/10.1039/b307853c
- 2
Gupta, K.C. and Sutar, A.K., Coord. Chem. Rev., 2008, vol. 252, nos 12–14, p. 1420. https://doi.org/10.1016/j.ccr.2007.09.005
- 3
Pawanoji, A.A. and Mehta, B.H., Imper. J. Interdiscipl. Res., 2016, vol. 2, no. 12, p. 448.
- 4
Burlov, A.S., Vlasenko, V.G., Garnovskii, D.A., et al., Russ. J. Inorg. Chem., 2014, vol. 59, p. 721. https://doi.org/10.1134/S0036023614070031
- 5
Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., et al., Polyhedron, 2018, vol. 144, p. 249. https://doi.org/10.1016/j.poly.2018.01.020
- 6
Burlov, A.S., Mal’tsev, E.I., Vlasenko, V.G., et al., Polyhedron, 2017, vol. 133, p. 231. https://doi.org/10.1016/j.poly.2017.05.045
- 7
Lysakova, T.P., Burlov, A.S., Vlasenko, V.G., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 701. https://doi.org/10.1134/S1070328416110075
- 8
Burlov, A.S., Vlasenko, V.G., Koshchienko, Y.V., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 267. https://doi.org/10.1134/S1070328416030027
- 9
Burlov, A.S., Ikorskii, V.N., Nikolaevskii, S.A., et al., Russ. J. Inorg. Chem., 2008, vol. 53, no. 10, p. 1566. https://doi.org/10.1134/S0036023608100082
- 10
Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., et al., Polyhedron, 2018, vol. 154, p. 123. https://doi.org/10.1016/j.poly.2018.07.053
- 11
Burlov, A.S., Koshchienko, Yu.V., Ikorskii, V.N., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 7, p. 1065. https://doi.org/10.1134/S0036023606070096
- 12
Burlov, A.S., Uraev, A.I., Ikorskii, V.N., et al., Russ. J. Gen. Chem., 2008, vol. 78, no. 6, p. 1230. https://doi.org/10.1134/S1070363208060224
- 13
Barton, J.K., Science, 1986, vol. 233, p. 727.
- 14
Burrows, C.J. and Muller, J.G., Chem. Rev., 1998, vol. 98, p. 1109. https://doi.org/10.1021/cr960421s
- 15
Erkkila, K.E., Odom, D.T., and Barton, J.K., Chem. Rev., 1999, vol. 99, p. 2777. https://doi.org/10.1021/cr9804341
- 16
Santini, C., Pellei, M., Gandin, V., et al., Chem. Rev., 2014, vol. 114, no. 1, p. 815. https://doi.org/10.1021/cr400135x
- 17
Peng Li, Mei Ju Niu, Min Hong, et al., J. Inorg. Biochem., 2014, vol. 137, p. 101. https://doi.org/10.1016/j.jinorgbio.2014.04.005
- 18
Singh, K., Barwa, M.S., and Tyagi, P., Eur. J. Med. Chem., 2006, vol. 41, p. 147. https://doi.org/10.1016/j.ejmech.2005.06.006
- 19
Fonkui, T.Y., Ikhile, M.I., Ndinteh, D.T., et al., Trop. J. Pharm. Res., 2018, vol. 17, p. 2507. https://doi.org/10.4314/tjpr.v17i12.29
- 20
Abd El Halim, H.F., Mohamed, G.G., and Anwar, M.N., Appl. Organomet. Chem., 2018, vol. 32. https://doi.org//10.1002/aoc.3899
- 21
Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, no. 8, p. 1680.
- 22
Tuck, D.G., Pure Appl. Chem., 1979, vol. 51, no. 10, p. 2005. https://doi.org/10.1351/pac197951102005
- 23
Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Ya.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, p. 95. https://doi.org/10.1016/j.nima.2008.12.167
- 24
Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Method for Investigation of Structures of Amorphous Solids: EXAFS Spectroscopy), Novosibirsk: Nauka SO, 1988.
- 25
Newville, M., J. Synchrotron Rad., 2001, vol. 8, p. 96.https://doi.org/10.1107/S0909049500016290
- 26
Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev. B, 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995
- 27
Lazarenko, V.A., Dorovatovskii, P.V., Zubavichus, Y.V., et al., Crystals, 2017, vol. 7, no. 11, p. 325. https://doi.org/10.3390/cryst7110325
- 28
Evans, P.R., Acta Crystallogr., Sect. D: Struct. Biol., 2006, vol. 62, p. 72. https://doi.org/10.1107/S0907444905036693
- 29
Battye, T.G., Kontogiannis, L., Johnson, O., et al., Acta Crystallogr., Sect. D: Struct. Biol., 2011, vol. 67, p. 271. https://doi.org/10.1107/S0907444910048675
- 30
Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930
- 31
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., https://doi.org/10.1107/S0021889808042726
- 32
Kharisov, B.I., Blanco, L.M., Garnovskii, A.D., et al., Polyhedron, 1998, vol. 17, nos. 2−3, p. 381. https://doi.org/10.1016/S0277-5387(97)00284-2
- 33
Kharisov, B.I., Garnovskii, D.A., Blanco, L.M., Burlov, A.S., et al., Polyhedron, 1999, vol. 18, no. 7, p. 985. https://doi.org/10.1016/S0277-5387(98)00383-0
- 34
Vlasenko, V.G., Garnovskii, D.A., Aleksandrov, G.G., et al., Polyhedron, 2019, vol. 157, p. 6. https://doi.org/10.1016/j.poly.2018.09.065
- 35
Garnovskii, D.A., Vlasenko, V.G., Aleksandrov, G.G., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 596. https://doi.org/10.1134/S1070328418100032
ACKNOWLEDGMENTS
The equipment of the unique scientific setup “Kurchatov Synchrotron Radiation Source” supported by the Ministry of Education and Science of the Russian Federation (project no. RFMEFI61914X0002) was used. The IR and 1Н NMR spectra were recorded using the equipment of the Center for Collective Use “Molecular Spectroscopy.”
Funding
This work was supported by the Southern Federal University.
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by E. Yablonskaya
Rights and permissions
About this article
Cite this article
Lifintseva, T.V., Burlov, A.S., Vlasenko, V.G. et al. Cu(II), Ni(II), and Co(II) Complexes of Tetradentate Azomethine Ligands: Chemical and Electrochemical Syntheses, Crystal Structures, and Magnetic Properties. Russ J Coord Chem 45, 867–875 (2019). https://doi.org/10.1134/S1070328419120054
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- tetradentate Schiff bases
- electrochemical synthesis
- metal complexes
- magnetic properties
- X-ray diffraction analysis