Cu(II), Ni(II), and Co(II) Complexes of Tetradentate Azomethine Ligands: Chemical and Electrochemical Syntheses, Crystal Structures, and Magnetic Properties

Abstract

Complexes CuL1 ⋅ MeOH (Ia), NiL1 ⋅ MeOH (Ib), CоL1 ⋅ MeOH (Ic), CuL2 (IIa), NiL2 (IIb), and CоL2 (IIc) of the tetradentate azomethine compounds, namely, 4-methyl-N-[2-[(E)-2-[2-[2-[(E)-[2-(p-toluenesulfamino)phenyl]methyleneamino]ethoxy]ethyliminomethyl]phenyl]benzenesulfamide (H2L1) and 4-methyl-N-[2-[(E)-3-[4-[3-[(E)-[2-(p-toluenesulfamino)phenyl]methyleneamino]propoxy]butoxy]-propyliminomethyl]phenyl]benzenesulfamide (H2L2), which are the condensation products of 2-(N-tosylamino)benzaldehyde with 3,4-dioxa-1,8-octanediamine and 4,9-dioxa-1,12-dodecanediamine, are synthesized using the chemical and electrochemical methods. The structures, compositions, and properties of the synthesized metal complexes are studied by the methods of elemental analysis, IR spectroscopy, X-ray absorption spectroscopy, magnetochemistry, and X-ray diffraction analysis (СIF files CCDC nos. 1910746 (Ia), 1910747 (Ib), and 1910748 (Ic)). In the molecules of compounds IaIc, the L1 macrocyclic ligand coordinates the metal atom by four nitrogen atoms via the tetradentate chelate mode to form the polyhedron as a distorted tetrahedron.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Cozzi, P.G., Chem. Soc. Rev., 2004, vol. 33, p. 410. https://doi.org/10.1039/b307853c

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Gupta, K.C. and Sutar, A.K., Coord. Chem. Rev., 2008, vol. 252, nos 12–14, p. 1420. https://doi.org/10.1016/j.ccr.2007.09.005

    CAS  Article  Google Scholar 

  3. 3

    Pawanoji, A.A. and Mehta, B.H., Imper. J. Interdiscipl. Res., 2016, vol. 2, no. 12, p. 448.

    Google Scholar 

  4. 4

    Burlov, A.S., Vlasenko, V.G., Garnovskii, D.A., et al., Russ. J. Inorg. Chem., 2014, vol. 59, p. 721. https://doi.org/10.1134/S0036023614070031

    CAS  Article  Google Scholar 

  5. 5

    Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., et al., Polyhedron, 2018, vol. 144, p. 249. https://doi.org/10.1016/j.poly.2018.01.020

    CAS  Article  Google Scholar 

  6. 6

    Burlov, A.S., Mal’tsev, E.I., Vlasenko, V.G., et al., Polyhedron, 2017, vol. 133, p. 231. https://doi.org/10.1016/j.poly.2017.05.045

    CAS  Article  Google Scholar 

  7. 7

    Lysakova, T.P., Burlov, A.S., Vlasenko, V.G., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 701. https://doi.org/10.1134/S1070328416110075

    CAS  Article  Google Scholar 

  8. 8

    Burlov, A.S., Vlasenko, V.G., Koshchienko, Y.V., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 267. https://doi.org/10.1134/S1070328416030027

    CAS  Article  Google Scholar 

  9. 9

    Burlov, A.S., Ikorskii, V.N., Nikolaevskii, S.A., et al., Russ. J. Inorg. Chem., 2008, vol. 53, no. 10, p. 1566. https://doi.org/10.1134/S0036023608100082

    Article  Google Scholar 

  10. 10

    Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., et al., Polyhedron, 2018, vol. 154, p. 123. https://doi.org/10.1016/j.poly.2018.07.053

    CAS  Article  Google Scholar 

  11. 11

    Burlov, A.S., Koshchienko, Yu.V., Ikorskii, V.N., et al., Russ. J. Inorg. Chem., 2006, vol. 51, no. 7, p. 1065. https://doi.org/10.1134/S0036023606070096

    Article  Google Scholar 

  12. 12

    Burlov, A.S., Uraev, A.I., Ikorskii, V.N., et al., Russ. J. Gen. Chem., 2008, vol. 78, no. 6, p. 1230. https://doi.org/10.1134/S1070363208060224

    CAS  Article  Google Scholar 

  13. 13

    Barton, J.K., Science, 1986, vol. 233, p. 727.

    CAS  Article  Google Scholar 

  14. 14

    Burrows, C.J. and Muller, J.G., Chem. Rev., 1998, vol. 98, p. 1109. https://doi.org/10.1021/cr960421s

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Erkkila, K.E., Odom, D.T., and Barton, J.K., Chem. Rev., 1999, vol. 99, p. 2777. https://doi.org/10.1021/cr9804341

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Santini, C., Pellei, M., Gandin, V., et al., Chem. Rev., 2014, vol. 114, no. 1, p. 815. https://doi.org/10.1021/cr400135x

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Peng Li, Mei Ju Niu, Min Hong, et al., J. Inorg. Biochem., 2014, vol. 137, p. 101. https://doi.org/10.1016/j.jinorgbio.2014.04.005

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Singh, K., Barwa, M.S., and Tyagi, P., Eur. J. Med. Chem., 2006, vol. 41, p. 147. https://doi.org/10.1016/j.ejmech.2005.06.006

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Fonkui, T.Y., Ikhile, M.I., Ndinteh, D.T., et al., Trop. J. Pharm. Res., 2018, vol. 17, p. 2507. https://doi.org/10.4314/tjpr.v17i12.29

    CAS  Article  Google Scholar 

  20. 20

    Abd El Halim, H.F., Mohamed, G.G., and Anwar, M.N., Appl. Organomet. Chem., 2018, vol. 32. https://doi.org//10.1002/aoc.3899

    Article  Google Scholar 

  21. 21

    Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, no. 8, p. 1680.

    CAS  Google Scholar 

  22. 22

    Tuck, D.G., Pure Appl. Chem., 1979, vol. 51, no. 10, p. 2005. https://doi.org/10.1351/pac197951102005

    CAS  Article  Google Scholar 

  23. 23

    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Ya.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, p. 95. https://doi.org/10.1016/j.nima.2008.12.167

    CAS  Article  Google Scholar 

  24. 24

    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Method for Investigation of Structures of Amorphous Solids: EXAFS Spectroscopy), Novosibirsk: Nauka SO, 1988.

  25. 25

    Newville, M., J. Synchrotron Rad., 2001, vol. 8, p. 96.https://doi.org/10.1107/S0909049500016290

    CAS  Article  Google Scholar 

  26. 26

    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev. B, 1995, vol. 52, p. 2995. https://doi.org/10.1103/PhysRevB.52.2995

    Article  Google Scholar 

  27. 27

    Lazarenko, V.A., Dorovatovskii, P.V., Zubavichus, Y.V., et al., Crystals, 2017, vol. 7, no. 11, p. 325. https://doi.org/10.3390/cryst7110325

    CAS  Article  Google Scholar 

  28. 28

    Evans, P.R., Acta Crystallogr., Sect. D: Struct. Biol., 2006, vol. 62, p. 72. https://doi.org/10.1107/S0907444905036693

    CAS  Article  Google Scholar 

  29. 29

    Battye, T.G., Kontogiannis, L., Johnson, O., et al., Acta Crystallogr., Sect. D: Struct. Biol., 2011, vol. 67, p. 271. https://doi.org/10.1107/S0907444910048675

    CAS  Article  Google Scholar 

  30. 30

    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112. https://doi.org/10.1107/S0108767307043930

    CAS  Article  Google Scholar 

  31. 31

    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., https://doi.org/10.1107/S0021889808042726

    CAS  Article  Google Scholar 

  32. 32

    Kharisov, B.I., Blanco, L.M., Garnovskii, A.D., et al., Polyhedron, 1998, vol. 17, nos. 2−3, p. 381. https://doi.org/10.1016/S0277-5387(97)00284-2

    CAS  Article  Google Scholar 

  33. 33

    Kharisov, B.I., Garnovskii, D.A., Blanco, L.M., Burlov, A.S., et al., Polyhedron, 1999, vol. 18, no. 7, p. 985. https://doi.org/10.1016/S0277-5387(98)00383-0

    CAS  Article  Google Scholar 

  34. 34

    Vlasenko, V.G., Garnovskii, D.A., Aleksandrov, G.G., et al., Polyhedron, 2019, vol. 157, p. 6. https://doi.org/10.1016/j.poly.2018.09.065

    CAS  Article  Google Scholar 

  35. 35

    Garnovskii, D.A., Vlasenko, V.G., Aleksandrov, G.G., et al., Russ. J. Coord. Chem., 2018, vol. 44, p. 596. https://doi.org/10.1134/S1070328418100032

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the unique scientific setup “Kurchatov Synchrotron Radiation Source” supported by the Ministry of Education and Science of the Russian Federation (project no. RFMEFI61914X0002) was used. The IR and 1Н NMR spectra were recorded using the equipment of the Center for Collective Use “Molecular Spectroscopy.”

Funding

This work was supported by the Southern Federal University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Burlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lifintseva, T.V., Burlov, A.S., Vlasenko, V.G. et al. Cu(II), Ni(II), and Co(II) Complexes of Tetradentate Azomethine Ligands: Chemical and Electrochemical Syntheses, Crystal Structures, and Magnetic Properties. Russ J Coord Chem 45, 867–875 (2019). https://doi.org/10.1134/S1070328419120054

Download citation

Keywords:

  • tetradentate Schiff bases
  • electrochemical synthesis
  • metal complexes
  • magnetic properties
  • X-ray diffraction analysis