Skip to main content
Log in

Synthesis, Characterization, and Crystal Structures of Oxidovanadium(V) Complexes Derived from 2-Chloro-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide with Antimicrobial Activity

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two new oxodovanadium(V) complexes, [VO(L)(OEt)(MeOH)] (I) and [VO(L)(Bha)] · EtOH (II), where L is the anion of 2-chloro-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide (H2L), Bha is the anion of 2-hydroxybenzohydroxamic acid (HBha), were prepared and characterized by IR, UV-Vis and single crystal X-ray determination (CIF files CCDC nos. 1840661 (I) and 1840662 (II)). Complex I crystallizes as the monoclinic space group P21/c with unit cell dimensions a = 8.272(1), b = 21.326(2), c = 12.979(1) Å, β = 107.173(2)°, V = 2187.5(4) Å3, Z = 4, R1 = 0.0811, wR2 = 0.2152, GOOF = 1.048. Complex II crystallizes as the triclinic space group P\(\bar {1}\) with unit cell dimensions a = 7.407(2), b = 14.195(2), c = 14.330(2) Å, α = 117.262(2)°, β = 92.947(2)°, γ = 95.771(2)°, V = 1324.4(4) Å3, Z = 2, R1 = 0.0919, wR2 = 0.1539, GOOF = 0.986. X-ray analysis indicates that the complexes are mononuclear vanadium(V) species, with the V atoms in octahedral coordination. The complexes were evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method. The two complexes have from medium to strong activities against B. subtilis, S. aureus, and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kaplancikli, Z.A., Altintop, M.D., Ozdemir, A., et al., Lett. Drug Des. Discov., 2014, vol. 11, no. 3, p. 355.

    Article  CAS  Google Scholar 

  2. Narisetty, R., Chandrasekhar, K.B., Mohanty, S., et al., Lett. Drug Des. Discov., 2013, vol. 10, no. 7, p. 620.

    Article  CAS  Google Scholar 

  3. Zhi, F., Shao, N., Wang, Q., et al., J. Struct. Chem., 2013, vol. 54, no. 1, p. 148.

    Article  CAS  Google Scholar 

  4. Ozdemir, A., Turan-Zitouni, G., Kaplancikli, Z.A., et al., J. Enzyme Inhib. Med. Chem., 2008, vol. 23, no. 2, p. 470.

    Article  CAS  PubMed  Google Scholar 

  5. Loncle, C., Brunel, J.M., Vidal, N., et al., Eur. J. Med. Chem., 2004, vol. 39, no. 12, p. 1067.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, Y.-C., Wang, H.-L., Tang, S.-F., et al., Anticancer Res., 2014, vol. 34, no. 10, p. 6034.

    Google Scholar 

  7. Krishnamoorthy, P., Sathyadevi, P., Cowley, A.H., et al., Eur. J. Med. Chem., 2011, vol. 46, no. 8, p. 3376.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, M., Xian, D.-M., Li, H.-H., et al., Aust. J. Chem., 2012, vol. 65, no. 4, p. 343.

    Article  CAS  Google Scholar 

  9. Shi, L., Ge, H.-M., Tan, S.-H., et al., Eur. J. Med. Chem., 2007, vol. 42, no. 4, p. 558.

    Article  CAS  PubMed  Google Scholar 

  10. Rai, N.P., Narayanaswamy, V.K., Govender, T., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 6, p. 2677.

    Article  CAS  PubMed  Google Scholar 

  11. Wazalwar, S.S., Bhave, N.S., Dikundwar, A.G., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2011, vol. 41, no. 5, p. 459.

    CAS  Google Scholar 

  12. Liu, J.-L., Sun, M.-H., and Ma, J.-J., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, vol. 45, no. 1, p. 117.

    Article  CAS  Google Scholar 

  13. Chohan, Z.H., Sumrra, S.H., Youssoufi, M.H., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 7, p. 2739.

    Article  CAS  PubMed  Google Scholar 

  14. Taheri, O., Behzad, M., Ghaffari, A., et al., Transition Met. Chem., 2014, vol. 39, no. 2, p. 253.

    CAS  Google Scholar 

  15. SMART (version 5.625) and SAINT (version 6.01), Madison: Bruker AXS Inc., 2007.

  16. Sheldrick, G.M., SADABS, Program for Empirical Absorption Correction of Area Detector, Göttingen: Univ. of Göttingen, 1996.

    Google Scholar 

  17. Sheldrick, G.M., SHELXTL, Version 5.1, Software Reference Manual, Madison: Bruker AXS, Inc., 1997.

    Google Scholar 

  18. Meletiadis, J., Meis, J.F.G.M., Mouton, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, no. 8, p. 2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarkar, A. and Pal, S., Polyhedron, 2007, vol. 26, no. 6, p. 1205.

    Article  CAS  Google Scholar 

  20. Monfared, H.H., Alavi, S., Bikas, R., et al., Polyhedron, 2010, vol. 29, no. 18, p. 3355.

    Article  CAS  Google Scholar 

  21. Zhang, X.-T., Zhan, X.-P., Wu, D.-M., et al., Chin. J. Struct. Chem., 2002, vol. 21, no. 7, p. 629.

    CAS  Google Scholar 

  22. Guo, S., Ding, Y., Li, A., et al., Z. Anorg. Allg. Chem., 2018, vol. 644, no. 19, p. 1172.

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was financially supported by K.C. Wong Magna Fund in Ningbo University, Ningbo natural science fund (project no. 201701HJ-B01019) and Ningbo Education Research Project (project no. 2017YZD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S.M., Qiu, X.Y., Wang, J.C. et al. Synthesis, Characterization, and Crystal Structures of Oxidovanadium(V) Complexes Derived from 2-Chloro-N'-(3,5-dichloro-2-hydroxybenzylidene)benzohydrazide with Antimicrobial Activity. Russ J Coord Chem 45, 378–384 (2019). https://doi.org/10.1134/S1070328419040109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328419040109

Keywords:

Navigation