The First Heterometallic Acetate-Bridged Pt(II)–Pd(II) Complex: Synthesis, Structure, and Formation of Bimetallic PtPd2 Nanoparticles


The reaction of platinum acetate blue, empirically described as Pt(OOCMe)2.50, with palladium(II) acetate Pd3(μ-OOCMe)6 gave the first heterometallic acetate-bridged platinum(II) and palladium(II) complex Pd2Pt(μ-OOCMe)6 (I) as co-crystallizates 17Pd2Pt(μ-OOCMe)6 ⋅ 4Pd3(μ-OOCMe)6 ⋅ 42C6H6 (IIa) and 17Pd2Pt(μ-OOCMe)6 ⋅ 4 Pd3(μ-OOCMe)6 (IIb). Single crystal X-ray diffraction (CIF files CCDC nos. 1568105 and 1852744), EXAFS, and quantum chemical studies (DFT and QTAIM) of complex I revealed a slightly distorted triangular structure similar to the structure of palladium(II) acetate Pd3(μ-OOCMe)6 and hypothetical platinum(II) complex Pt3(μ-OOCMe)6. The thermal decomposition of complex IIa gives the bimetallic alloy PtPd2. A combined X-ray diffraction and EXAFS study demonstrated that the obtained material consists of core (Pt)–shell (Pd) particles with an average size of ~28 nm and a minor amount of smaller (~5 nm) PdO nanoparticles on the surface. The obtained results are useful for the understanding of the nature and structure of the supported phase of heterogeneous Pt–Pd catalysts.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    Chen, M. and Schmidt, L.D., J. Catal., 1979, vol. 56, p. 198.

    Article  CAS  Google Scholar 

  2. 2

    Lee, Y.W., Ko, Y.A.R., Kim, D.Y., et al., RSC Adv., 2012, vol. 2, p. 1119.

    Article  CAS  Google Scholar 

  3. 3

    Morlang, A., Neuhausen, U., Klementiev, K.V., et al., Appl. Catal., B, 2005, vol. 60, p. 191.

    Article  CAS  Google Scholar 

  4. 4

    Lapisardi, G., Gélin, P., Kaddouri, A., et al., Top. Catal., 2007, vols 42–43, p. 461.

    Article  CAS  Google Scholar 

  5. 5

    Wang, W., Wang, Z., Wang, J., et al., Adv. Sci., 2017, p. 1600486.

  6. 6

    Kozitsyna, N.Yu., Nefedov, S.E., Dolgushin, F.M., et al., Inorg. Chim. Acta, 2006, vol. 359, p. 2072.

    Article  CAS  Google Scholar 

  7. 7

    Tkachenko, O.P., Stakheev, A.Yu., Kustov, L.V., et al., Catal. Lett., 2006, vol. 112, p. 155.

    Article  CAS  Google Scholar 

  8. 8

    Kozitsyna, N.Yu., Nefedov, S.E., Dobrokhotova, Zh.V., et al., Nanotechnol. Russ., 2008, vol. 3, p. 100.

    Article  Google Scholar 

  9. 9

    Nefedov, S.E., Kozitsyna, N.Yu., Vargaftik, M.N., et al., Polyhedron, 2009, vol. 28, p. 172.

    Article  CAS  Google Scholar 

  10. 10

    Nefedov, S.E., Kozitsyna, N.Yu., Akhmadullina, N.S., et al., Inorg. Chem. Commun., 2011, vol. 14, p. 554.

    Article  CAS  Google Scholar 

  11. 11

    Cherkashina, N.V., Kochubey, D.I., Kanazhevskiy, V.V., et al., Inorg. Chem., 2014, vol. 53, p. 8397.

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Skapski, A.C. and Smart, M.L., J. Chem. Soc., Chem. Commun., 1970, p. 658.

  13. 13

    Cotton, F.A. and Han, S., Revue de Chimie Minerale, 1985, vol. 22, p. 277.

    CAS  Google Scholar 

  14. 14

    Carrondo, M.A.A.F. and Skapski, A.C., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1978, vol. 34, p. 3576.

    Article  Google Scholar 

  15. 15

    Yamaguchi, T., Nishimura, N., and Ito, T., J. Am. Chem. Soc., 1993, vol. 115, p. 1612.

    Article  CAS  Google Scholar 

  16. 16

    Yamaguchi, T., Nishimura, N., Shirakura, K., et al., Bull. Chem. Soc. Jpn., 2000, vol. 73, p. 775.

    Article  CAS  Google Scholar 

  17. 17

    Yamaguchi, T. and Ito, T., Adv. Inorg. Chem., 2001, vol. 52, p. 205.

    Article  CAS  Google Scholar 

  18. 18

    Murahashi, T., Usui, K., Inoue, R., et al., Chem. Sci., 2011, vol. 2, p. 117.

    Article  CAS  Google Scholar 

  19. 19

    Bader, R., Atoms in Molecules: A Quantum Theory, Oxford (USA): Oxford Univ., 1994.

    Google Scholar 

  20. 20

    The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Matta C.F. and Boyd R.J., Eds., Weinheim: Wiley, 2007.

    Google Scholar 

  21. 21

    Hwang, B.-J., Sarma, L.S., Chen, J.-M., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 11140.

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Nefedov, S.E., Kozitsyna, N.Yu., Cherkashina, N.V., et al., Inorg. Chem. Commun., 2006, vol. 9, p. 1026.

    Article  CAS  Google Scholar 

  23. 23

    Cherkashina, N.V., Nefedov, S.E., Klyagina, A.P., et al., Inorg. Chem. Commun., 2012, vol. 21, p. 39.

    Article  CAS  Google Scholar 

  24. 24

    Rades, T., Pak, C., Polisset-Thfoin, M., et al., Catal. Lett., 1994, vol. 29, p. 91.

    Article  CAS  Google Scholar 

  25. 25

    Huang, R., Wen, Y.H., Zhu, Z.Z., et al., J. Phys. Chem. C, 2012, vol. 116, p. 8664.

    Article  CAS  Google Scholar 

  26. 26

    Perrin, D.D. and Armarego, W.L.F., Purification of Laboratory Chemicals, Oxford: Pergamon, 1988.

    Google Scholar 

  27. 27

    Battye, T.G.G., Kontogiannis, L., Johnson, O., et al., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, vol. 67, p. 271.

    Article  CAS  Google Scholar 

  28. 28

    SAINT Area-Detector Integration Sofware, 2012, Madison: Bruker AXS Inc., 2012.

  29. 29

    Evans, P.R., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2006, vol. 62, p. 72.

  30. 30

    Evans P.R., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.

  31. 31

    Ravel, B. and Newville, M., Synchrotron Radiat., 2005, vol. 12, p. 537.

    Article  CAS  Google Scholar 

  32. 32

    Newville, M., J. Synchrotron Radiat., 2001, vol. 8, p. 322.

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158.

    Article  CAS  Google Scholar 

  34. 34

    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  35. 35

    Matsuoka, O., Bull. Univ. Electron. Commun., 1992, vol. 5, p. 23.

    Google Scholar 

  36. 36

    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2003, vol. 109, p. 85.

    Article  CAS  Google Scholar 

  37. 37

    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2012, vol. 131, p. 1124.

    Article  CAS  Google Scholar 

  38. 38

    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2013, vol. 132, p. 1363.

    Article  CAS  Google Scholar 

  39. 39

    Keith, T.A., AIMAll (version 16.05.18), Overland Park: TK Gristmill Software, 2016.

    Google Scholar 

Download references


X-ray spectroscopy studies (XANES and EXAFS) and quantum chemical calculations were supported by the Russian Science Foundation (project no. 18-73-10206). The work was supported by the Russian Foundation for Basic Research (projects nos. 17-03-00355, 18-03-00228, 18-33-00632) and the Program “5-100” of the Russian People’s Friendship University. Equipment of the Center for Collective Use of Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, was used.

XRD studies of of the complex IIb were carried out with the support of the National Research Center Kurchatov Institute (Order 2683 of November 25, 2018).

Author information



Corresponding author

Correspondence to M. N. Vargaftik.

Additional information

Dedicated to the 90th birthday of Academician I.I. Moiseev

Translated by Z. Svitanko

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherkashina, N.V., Churakov, A.V., Yakushev, I.A. et al. The First Heterometallic Acetate-Bridged Pt(II)–Pd(II) Complex: Synthesis, Structure, and Formation of Bimetallic PtPd2 Nanoparticles. Russ J Coord Chem 45, 253–265 (2019).

Download citation


  • platinum
  • palladium
  • acetate complexes
  • synthesis
  • X-ray diffraction
  • crystal chemistry
  • quantum chemical analysis
  • nanoparticles