Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 4, pp 253–265 | Cite as

The First Heterometallic Acetate-Bridged Pt(II)–Pd(II) Complex: Synthesis, Structure, and Formation of Bimetallic PtPd2 Nanoparticles

  • N. V. Cherkashina
  • A. V. Churakov
  • I. A. Yakushev
  • I. P. Stolyarov
  • V. N. Khrustalev
  • E. V. Khramov
  • A. A. Markov
  • N. S. Smirnova
  • Ya. V. Zubavichus
  • P. V. Dorovatovskii
  • Zh. V. Dobrokhotova
  • A. B. Ilyukhin
  • M. N. VargaftikEmail author
Article

Abstract

The reaction of platinum acetate blue, empirically described as Pt(OOCMe)2.50, with palladium(II) acetate Pd3(μ-OOCMe)6 gave the first heterometallic acetate-bridged platinum(II) and palladium(II) complex Pd2Pt(μ-OOCMe)6 (I) as co-crystallizates 17Pd2Pt(μ-OOCMe)6 ⋅ 4Pd3(μ-OOCMe)6 ⋅ 42C6H6 (IIa) and 17Pd2Pt(μ-OOCMe)6 ⋅ 4 Pd3(μ-OOCMe)6 (IIb). Single crystal X-ray diffraction (CIF files CCDC nos. 1568105 and 1852744), EXAFS, and quantum chemical studies (DFT and QTAIM) of complex I revealed a slightly distorted triangular structure similar to the structure of palladium(II) acetate Pd3(μ-OOCMe)6 and hypothetical platinum(II) complex Pt3(μ-OOCMe)6. The thermal decomposition of complex IIa gives the bimetallic alloy PtPd2. A combined X-ray diffraction and EXAFS study demonstrated that the obtained material consists of core (Pt)–shell (Pd) particles with an average size of ~28 nm and a minor amount of smaller (~5 nm) PdO nanoparticles on the surface. The obtained results are useful for the understanding of the nature and structure of the supported phase of heterogeneous Pt–Pd catalysts.

Keywords:

platinum palladium acetate complexes synthesis X-ray diffraction crystal chemistry quantum chemical analysis nanoparticles 

Notes

ACKNOWLEDGMENTS

X-ray spectroscopy studies (XANES and EXAFS) and quantum chemical calculations were supported by the Russian Science Foundation (project no. 18-73-10206). The work was supported by the Russian Foundation for Basic Research (projects nos. 17-03-00355, 18-03-00228, 18-33-00632) and the Program “5-100” of the Russian People’s Friendship University. Equipment of the Center for Collective Use of Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, was used.

XRD studies of of the complex IIb were carried out with the support of the National Research Center Kurchatov Institute (Order 2683 of November 25, 2018).

REFERENCES

  1. 1.
    Chen, M. and Schmidt, L.D., J. Catal., 1979, vol. 56, p. 198.CrossRefGoogle Scholar
  2. 2.
    Lee, Y.W., Ko, Y.A.R., Kim, D.Y., et al., RSC Adv., 2012, vol. 2, p. 1119.CrossRefGoogle Scholar
  3. 3.
    Morlang, A., Neuhausen, U., Klementiev, K.V., et al., Appl. Catal., B, 2005, vol. 60, p. 191.CrossRefGoogle Scholar
  4. 4.
    Lapisardi, G., Gélin, P., Kaddouri, A., et al., Top. Catal., 2007, vols 42–43, p. 461.CrossRefGoogle Scholar
  5. 5.
    Wang, W., Wang, Z., Wang, J., et al., Adv. Sci., 2017, p. 1600486.Google Scholar
  6. 6.
    Kozitsyna, N.Yu., Nefedov, S.E., Dolgushin, F.M., et al., Inorg. Chim. Acta, 2006, vol. 359, p. 2072.CrossRefGoogle Scholar
  7. 7.
    Tkachenko, O.P., Stakheev, A.Yu., Kustov, L.V., et al., Catal. Lett., 2006, vol. 112, p. 155.CrossRefGoogle Scholar
  8. 8.
    Kozitsyna, N.Yu., Nefedov, S.E., Dobrokhotova, Zh.V., et al., Nanotechnol. Russ., 2008, vol. 3, p. 100.CrossRefGoogle Scholar
  9. 9.
    Nefedov, S.E., Kozitsyna, N.Yu., Vargaftik, M.N., et al., Polyhedron, 2009, vol. 28, p. 172.CrossRefGoogle Scholar
  10. 10.
    Nefedov, S.E., Kozitsyna, N.Yu., Akhmadullina, N.S., et al., Inorg. Chem. Commun., 2011, vol. 14, p. 554.CrossRefGoogle Scholar
  11. 11.
    Cherkashina, N.V., Kochubey, D.I., Kanazhevskiy, V.V., et al., Inorg. Chem., 2014, vol. 53, p. 8397.CrossRefGoogle Scholar
  12. 12.
    Skapski, A.C. and Smart, M.L., J. Chem. Soc., Chem. Commun., 1970, p. 658.Google Scholar
  13. 13.
    Cotton, F.A. and Han, S., Revue de Chimie Minerale, 1985, vol. 22, p. 277.Google Scholar
  14. 14.
    Carrondo, M.A.A.F. and Skapski, A.C., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1978, vol. 34, p. 3576.CrossRefGoogle Scholar
  15. 15.
    Yamaguchi, T., Nishimura, N., and Ito, T., J. Am. Chem. Soc., 1993, vol. 115, p. 1612.CrossRefGoogle Scholar
  16. 16.
    Yamaguchi, T., Nishimura, N., Shirakura, K., et al., Bull. Chem. Soc. Jpn., 2000, vol. 73, p. 775.CrossRefGoogle Scholar
  17. 17.
    Yamaguchi, T. and Ito, T., Adv. Inorg. Chem., 2001, vol. 52, p. 205.CrossRefGoogle Scholar
  18. 18.
    Murahashi, T., Usui, K., Inoue, R., et al., Chem. Sci., 2011, vol. 2, p. 117.CrossRefGoogle Scholar
  19. 19.
    Bader, R., Atoms in Molecules: A Quantum Theory, Oxford (USA): Oxford Univ., 1994.Google Scholar
  20. 20.
    The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Matta C.F. and Boyd R.J., Eds., Weinheim: Wiley, 2007.Google Scholar
  21. 21.
    Hwang, B.-J., Sarma, L.S., Chen, J.-M., et al., J. Am. Chem. Soc., 2005, vol. 127, p. 11140.CrossRefGoogle Scholar
  22. 22.
    Nefedov, S.E., Kozitsyna, N.Yu., Cherkashina, N.V., et al., Inorg. Chem. Commun., 2006, vol. 9, p. 1026.CrossRefGoogle Scholar
  23. 23.
    Cherkashina, N.V., Nefedov, S.E., Klyagina, A.P., et al., Inorg. Chem. Commun., 2012, vol. 21, p. 39.CrossRefGoogle Scholar
  24. 24.
    Rades, T., Pak, C., Polisset-Thfoin, M., et al., Catal. Lett., 1994, vol. 29, p. 91.CrossRefGoogle Scholar
  25. 25.
    Huang, R., Wen, Y.H., Zhu, Z.Z., et al., J. Phys. Chem. C, 2012, vol. 116, p. 8664.CrossRefGoogle Scholar
  26. 26.
    Perrin, D.D. and Armarego, W.L.F., Purification of Laboratory Chemicals, Oxford: Pergamon, 1988.Google Scholar
  27. 27.
    Battye, T.G.G., Kontogiannis, L., Johnson, O., et al., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, vol. 67, p. 271.CrossRefGoogle Scholar
  28. 28.
    SAINT Area-Detector Integration Sofware, 2012, Madison: Bruker AXS Inc., 2012.Google Scholar
  29. 29.
    Evans, P.R., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2006, vol. 62, p. 72.Google Scholar
  30. 30.
    Evans P.R., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.Google Scholar
  31. 31.
    Ravel, B. and Newville, M., Synchrotron Radiat., 2005, vol. 12, p. 537.  https://doi.org/10.1107/S0909049505012719 CrossRefGoogle Scholar
  32. 32.
    Newville, M., J. Synchrotron Radiat., 2001, vol. 8, p. 322.  https://doi.org/10.1007/978-3-319-03762-2 CrossRefGoogle Scholar
  33. 33.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158.CrossRefGoogle Scholar
  34. 34.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, p. 1347.CrossRefGoogle Scholar
  35. 35.
    Matsuoka, O., Bull. Univ. Electron. Commun., 1992, vol. 5, p. 23.Google Scholar
  36. 36.
    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2003, vol. 109, p. 85.CrossRefGoogle Scholar
  37. 37.
    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2012, vol. 131, p. 1124.CrossRefGoogle Scholar
  38. 38.
    Noro, T., Sekiya, M., and Koga, T., Theor. Chem. Accounts, 2013, vol. 132, p. 1363.CrossRefGoogle Scholar
  39. 39.
    Keith, T.A., AIMAll (version 16.05.18), Overland Park: TK Gristmill Software, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Cherkashina
    • 1
  • A. V. Churakov
    • 1
  • I. A. Yakushev
    • 1
  • I. P. Stolyarov
    • 1
  • V. N. Khrustalev
    • 2
  • E. V. Khramov
    • 2
    • 3
  • A. A. Markov
    • 1
  • N. S. Smirnova
    • 1
  • Ya. V. Zubavichus
    • 3
  • P. V. Dorovatovskii
    • 3
  • Zh. V. Dobrokhotova
    • 1
  • A. B. Ilyukhin
    • 1
  • M. N. Vargaftik
    • 1
    Email author
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations