Controlled Molecular Magnetism of Bi- and Polynuclear Transition Metal Complexes Based on Hydrazones, Azomethines, and Their Analogs

Abstract

The possibilities of the magnetochemical method for the description of structures and properties of bi- and tetranuclear metallochelates and supramolecular architectures based on coordination compounds with restricted types of ligand systems, mainly hydrazones, azomethines, and their analogs, are reviewed. The known published data for the bi- and polynuclear complexes, whose paramagnetic centers are bound by both intra- and intermolecular exchange interactions, are systematized. A relationship between specific features of the electronic and geometric structures of the complexes and the character of the exchange effects is considered. Magnetostructural relations in the discussed compounds are systematized. The compounds discussed are important model objects for the development of the strategy for the targeted design of one-, two-, and three-dimensional magnetically ordered structures.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

REFERENCES

  1. 1

    Itoh, K. and Kinoshita, M., Molecular Magnetism: New Magnetic Materials, Tokio: Kodansha and Gordon & Breach Science, 2000.

    Google Scholar 

  2. 2

    Magnetism: Molecules to Materials: Models and Experiments, Miller J.S. and Drillon, M., Eds., Weimheim: Wiley-VCH, 2001.

  3. 3

    Launay, J.P. and Verdaguer, M., Electrons in Molecules: From Basic Principles to Molecular Electronics, Oxford: Oxford University, 2014.

    Google Scholar 

  4. 4

    Joachim, C., Gimzewski, J.K., and Aviram, A., Nature, 2000, vol. 408, p. 541.

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Park, J., Pasupathy, A.N., Goldsmith, J.I., et al., Nature, 2002, vol. 417, p. 722.

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Smith, R.H.M., Noat, Y., Untiedt, C., et al., Nature, 2002, vol. 419, p. 906.

    Article  CAS  Google Scholar 

  7. 7

    Ng, M.K., Lee, D.C., and Yu, L., J. Am. Chem. Soc., 2002, vol. 124, p. 11862.

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Carrol, R.L. and Gorman, C.B., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 4378.

    Article  Google Scholar 

  9. 9

    Lippard, S.J. and Berg, J.M., Principles of Bioinorganic Chemistry, California: Univ. Sci. Books, Mill Valley, 1994.

  10. 10

    Que, L., Jr. and Dong, Y., Acc. Chem. Res., 1996, vol. 29, p. 190.

    Article  CAS  Google Scholar 

  11. 11

    Law, N.A., Caudle, M.T., and Pecoraro, V.L., Adv. Inorg. Chem., 1998, vol. 46, p. 305.

    Article  CAS  Google Scholar 

  12. 12

    Wu, A.J., Penner-Hahn, J.E., and Pecoraro, V.L., Chem. Rev., 2004, vol. 104, p. 903.

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Herrero, C., Lassalle-Kaiser, B., Leibl, W., et al., Coord. Chem. Rev., 2008, no. 252, p. 456.

  14. 14

    Kärkäs, M.D., Verho, O., Johnston, E.V., et al., Chem. Rev., 2014, vol. 114, p. 11863.

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Gerey, B., Gouré, E., Fortage, J., et al., Coord. Chem. Rev., 2016, no. 319, p. 1.

  16. 16

    Engelmann, X., Monte-Pérez, I., and Ray, K., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 7632.

    Article  CAS  Google Scholar 

  17. 17

    Ferrando-Soria, J., Vallejo, J., Castellano, M., et al., Coord. Chem. Rev., 2017, vol. 339, p. 17.

    Article  CAS  Google Scholar 

  18. 18

    Clemente-León, M., Coronado, E., Martí-Gastaldo, C., et al., Chem. Soc. Rev., 2011, vol. 40, p. 473.

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Muñoz, M.C. and Real, J.A., Coord. Chem. Rev., 2011, vol. 255, p. 2068.

    Article  CAS  Google Scholar 

  20. 20

    Guo, J.F., Yeng, W.F., and Gao, S., Eur. J. Inorg. Chem., 2008, p. 158.

  21. 21

    Coronado, E. and Mínguez-Espallargas, G., Chem. Soc. Rev., 2013, vol. 42, p. 1525.

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Grancha, T., Ferrando-Soria, J., Castellano, M., et al., Chem. Commun., 2014, vol. 50, p. 7569.

    Article  CAS  Google Scholar 

  23. 23

    Ouahab, L., Multifunctional Molecular Materials, Singapore: Pan Standford, 2013.

    Google Scholar 

  24. 24

    Ferrando-Soria, J., Ruiz-García, R., Cano, J., et al., Chem.-Eur. J., 2012, vol. 18, p. 1608.

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Sessoli, R., Boulon, M.-E., Caneschi, A., et al., Nat. Phys., 2015, vol. 10, no. 1, p. 69.

    Article  CAS  Google Scholar 

  26. 26

    Chorazy, S., Nakabayashi, K., Ohkoshi, S., et al., Chem. Mater., 2014, vol. 26, p. 4072.

    Article  CAS  Google Scholar 

  27. 27

    Pardo, E., Train, C., Gontard, G., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 15328.

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Risset, O.N., Quintero, P.A., Brinzari, T.V., et al., J. Am. Chem. Soc., 2014, vol. 136, p. 15660.

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Darago, L.E., Aubrey, M.L., Yu, C.J., et al., J. Am. Chem. Soc., 2015, vol. 137, p. 15703.

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Jeon, I.-R., Sun, L., Negru, B., et al., J. Am. Chem. Soc., 2016, vol. 138, p. 6583.

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Pinkowicz, D., Rams, M., Misek, M., et al., J. Am. Chem. Soc., 2015, vol. 137, p. 8795.

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Romero-Morcillo, T., Dela Pinta, D., Callejo, L.M., et al., Chem.-Eur. J., 2015, no. 21, p. 12112.

  33. 33

    Trzop, E., Zhang, D., Pineiro-Lopez, L., et al., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 8675.

    Article  CAS  Google Scholar 

  34. 34

    Clements, J.E., Price, J.R., Neville, S.M., et al., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 15105.

    Article  CAS  Google Scholar 

  35. 35

    Reed, D.A., Xiao, D.J., Gonzalez, M.I., et al., J. Am. Chem. Soc., 2016, vol. 138, p. 5594.

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Hay, J.P., Thibeault, J.C., and Hoffmann, R., J. Am. Chem. Soc., 1975, vol. 97, p. 4884.

    Article  CAS  Google Scholar 

  37. 37

    Kahn, O. and Briat, B., J. Chem. Soc., Faraday Trans. 2, 1976, vol. 268, p. 79.

    Google Scholar 

  38. 38

    Girerd, J.J., Joumaux, Y., and Kahn, O., Chem. Phys. Lett., 1981, vol. 82, p. 534.

    Article  CAS  Google Scholar 

  39. 39

    Kahn, O., Galy, J., Journaux, Y., et al., J. Am. Chem. Soc., 1982, vol. 104, p. 2165.

    Article  CAS  Google Scholar 

  40. 40

    Julve, M., Verdaguer, M., Gleizes, A., et al., Inorg. Chem., 1984, vol. 23, p. 3808.

    Article  CAS  Google Scholar 

  41. 41

    Julve, M., Faus, J., Verdaguer, M., et al., J. Am. Chem. Soc., 1984, vol. 106, p. 8306.

    Article  CAS  Google Scholar 

  42. 42

    Willet, R., Gatteschi, D., and Kahn, O., Magneto-Structural Correlations in Exchange-Coupled Systems (NATO ASI Series C), Dordrecht: D. Reidel., 1985.

    Google Scholar 

  43. 43

    Kahn, O., Angew. Chem., Int. Ed. Engl., 1985, vol. 24, p. 834.

    Article  Google Scholar 

  44. 44

    Kahn, O., Z. Anorg. Allg. Chem., 1987, vol. 68, p. 89.

    CAS  Google Scholar 

  45. 45

    Blondin, G. and Girerd, J.J., Chem. Rev., 1990, vol. 90, p. 1359.

    Article  CAS  Google Scholar 

  46. 46

    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401. https://doi.org/10.1134/S1070328410060011

    Article  CAS  Google Scholar 

  47. 47

    Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 1, p. 1. https://doi.org/10.1134/S1070328417010055

    Article  CAS  Google Scholar 

  48. 48

    Kalinnikov, V.T. and Rakitin, Yu.V. Vvedenie v magnetokhimiyu. Metod staticheskoi magnitnoi vospriimchivosti (Introduction to Magnetochemistry. Static Magnetic Susceptibility Method), Moscow: Nauka, 1980.

    Google Scholar 

  49. 49

    Rakitin, Yu.V. and Kalinnikov, V.T. Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Pe-tersburg: Nauka, 1994.

    Google Scholar 

  50. 50

    Kalinnikov, V.T., Rakitin, Yu.V., and Novotortsev, V.M., Russ. Chem. Rev., 2003, vol. 72, no. 12, p. 995.

    Article  CAS  Google Scholar 

  51. 51

    Shchegolkov, E.V., Burgart, Ya.V., Khudina, O.G., et al., Russ. Chem. Rev., 2010, vol. 79, no. 1, p. 31.

    Article  CAS  Google Scholar 

  52. 52

    Hakki, E., Safak, C., Mevlut, E., et al., J. Indian. Chem. Soc., 1989, vol. 66, p. 45.

    Google Scholar 

  53. 53

    Mishra, P., Gupta, P.N., and Shakya, A.K., J. Indian. Chem. Soc., 1991, vol. 68, p. 618.

    CAS  Google Scholar 

  54. 54

    Likhate, M.A. and Fernandes, P.S., J. Indian. Chem. Soc., 1990, vol. 67, p. 862.

    CAS  Google Scholar 

  55. 55

    Badr, M.Z.A., Mahmoud, M.A., Mahgoub, S.A., et al., Bull. Pol. Acad. Sci. Chem., 1989, vol. 37, p. 185.

    CAS  Google Scholar 

  56. 56

    Revankar, V.K., Arali, V.H., and Mehale, V.B., Indian. J. Chem. A, 1990, vol. 29, p. 889.

    Google Scholar 

  57. 57

    Bartolucci, C., Cellai, L., Patrizia, F., et al., Farmaco, 1992, vol. 41, p. 945.

    Google Scholar 

  58. 58

    Vicini, P., Incerti, M., Doychinova, I.A., et al., Eur. J. Med. Chem., 2006, vol. 41, p. 624.

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Odashima, T., Yamaguchi, M., and Ishii, H., Microchim. Acta, 1991, vol. 1, p. 267.

    Article  CAS  Google Scholar 

  60. 60

    Sakamoto, H., Ishikawa, J., Nakagamo, H., et al., Chem. Lett., 1992, vol. 21, p. 481.

    Article  Google Scholar 

  61. 61

    Levchenkov, S.I., Popov, L.D., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2014, vol. 84, no. 10, p. 1970.

    Article  CAS  Google Scholar 

  62. 62

    Abramenko, V.L., Garnovskii, A.D., Abramenko, Yu.V., Koord. Khim., 1994, vol. 20, no. 1, p. 39.

    CAS  Google Scholar 

  63. 63

    Lukov, V.V., Kogan, V.A., Bogatyreva, E.V., et al., Zh. Neorg. Khim., 1989, vol. 34, no. 10, p. 2554.

    CAS  Google Scholar 

  64. 64

    Bogatyreva, E.V., Kogan, V.A., Lukov, V.V., et al., Zh. Neorg. Khim., 1990, vol. 35, no. 8, p. 2010.

    CAS  Google Scholar 

  65. 65

    Kogan, V.A. and Lukov, V.V., Koord. Khim., 1993, vol. 19, no. 6, p. 476.

    CAS  Google Scholar 

  66. 66

    Lukov, V.V., Tupolova, Yu.P., Kogan, V.A., et al., Russ. J. Coord. Chem., 2003, vol. 29, no. 5, p. 335.

    Article  CAS  Google Scholar 

  67. 67

    Levchenkov, S.I., Kogan, V.A., and Lukov V.V., Zh. Neorg. Khim., 1993, vol. 38, no. 12, p. 1992.

    CAS  Google Scholar 

  68. 68

    Lukov, V.V., Levchenkov, S.I., and Kogan, V.A., Zh. Neorg. Khim., 1997, vol. 42, no. 4, p. 606.

    CAS  Google Scholar 

  69. 69

    Lukov, V.V., Levchenkov, S.I., and Kogan V.A., Koord. Khim., 1998, vol. 24, no. 12, p. 946.

    Google Scholar 

  70. 70

    Kogan, V.A., Lukov, V.V., Levchenkov, S.I., et al., Mendeleev Commun., 1998, no. 4, p. 145.

  71. 71

    Iskander, M.F., El-Sayed, L., Salem, N.M.H., et al., Polyhedron, 2004, vol. 23, no. 1, p. 23.

    Article  CAS  Google Scholar 

  72. 72

    Starikov, A.G., Kogan, V.A., Lukov, V.V., et al., Russ. J. Coord. Chem., 2009, vol. 35, no. 8, p. 616. doi 10.1134/S1070328409080090

    Article  CAS  Google Scholar 

  73. 73

    Tandon, S.S., Thompson, L.K., and Hynes, R.C., Inorg. Chem., 1992, vol. 31, p. 2210.

    Article  CAS  Google Scholar 

  74. 74

    Brooker, S., Davidson, T.C., Hay, S.J., et al., Coord. Chem. Rev., 2001, vol. 216, p. 3.

    Article  Google Scholar 

  75. 75

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493.

    Article  CAS  Google Scholar 

  76. 76

    Sangeetha, N.R., Baradi, R., Gupta, R., et al., Polyhedron, 1999, vol. 18, p. 1425.

    Article  CAS  Google Scholar 

  77. 77

    Haba, P.M., Diouf, O., Sy, A., et al., Z. Kristallogr. Cryst. Mater., 2005, vol. 220, p. 479.

    CAS  Google Scholar 

  78. 78

    Chan, S.C., Koh, L.L., Leung, P.-H., et al., Inorg. Chim. Acta, 1995, vol. 236, p. 101.

    Article  CAS  Google Scholar 

  79. 79

    Roth, A., Buchholz, A., Gärtner, V., et al., Z. Anorg. Allgem. Chem., 2007, vol. 633, p. 2009.

    Article  CAS  Google Scholar 

  80. 80

    Simonov, Yu.A., Bourosh, P.N., Yampol’skaya, M.A. et al., Koord. Khim., 1990, vol. 16, no. 8, p. 1072.

    CAS  Google Scholar 

  81. 81

    Yamamoto, T., X-ray Spectrom., 2008, vol. 37, p. 572.

    Article  CAS  Google Scholar 

  82. 82

    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectoscopic Method for Studying the Structure of Amorphous Solids: EXAFS Spectroscopy) Novosibirsk: Nauka. Sib. Otd-nie, 1988.

    Google Scholar 

  83. 83

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 483. doi 10.1134/S1070328411060078

    Article  CAS  Google Scholar 

  84. 84

    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, no. 1, p. 81.

    Article  CAS  Google Scholar 

  85. 85

    Kogan, V.A., Levchenkov, S.I., Popov, L.D., et al., Ros. Khim. Zh., 2009, vol. 53, no. 1, p. 86.

    CAS  Google Scholar 

  86. 86

    Tandon, S.S., Thompson, L.K., and Hynes, R.C., Inorg. Chem., 1992, vol. 31, p. 2210.

    Article  Google Scholar 

  87. 87

    Abraham, F., Lagrenee, M., Sueur, S., et al., J. Chem. Soc., Dalton Trans., 1991, p. 1443.

  88. 88

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 12, p. 2501.

    Article  CAS  Google Scholar 

  89. 89

    Popov, L.D., Mishchenko, A.V., Tupolova, Yu.P., et al., Russ. J. Gen. Chem., 2011, vol, vol. 81, no. 8, p. 1691.

  90. 90

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2012, vol. 82, no. 3, p. 465.

    Article  CAS  Google Scholar 

  91. 91

    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.

    Article  CAS  Google Scholar 

  92. 92

    Popov, L.D., Tupolova, Yu.P., Lukov, V.V., et al., Inorg. Chim. Acta, 2009, vol. 362, no. 6, p. 1673.

    Article  CAS  Google Scholar 

  93. 93

    Tupolova, Yu.P., Popov, L.D., Lukov, V.V., et al., Z. Anorg. Allg. Chem., 2009, vol. 635, no. 3, p. 530.

    Article  CAS  Google Scholar 

  94. 94

    Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., Russ. J. Struct. Chem., 2012, vol. 53, no. 2, p. 295.

    Article  CAS  Google Scholar 

  95. 95

    Castro, I., Calatayud, M.L., Barros, W.P., et al., Inorg. Chem., 2014, vol. 53, p. 5759.

    Article  CAS  PubMed  Google Scholar 

  96. 96

    Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 69. https://doi.org/10.1134/S1070328415020098

    Article  CAS  Google Scholar 

  97. 97

    Pavlishchuk, A.V., Satska, Yu.A., Kolotilov, S.V., et al., Cur. Inorg. Chem., 2015, vol. 5, p. 5.

    Article  CAS  Google Scholar 

  98. 98

    Hazra, S., Karmakar, A., Silva, M., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 113.

    Article  CAS  Google Scholar 

  99. 99

    Liu, X., Cen, P., Li, H., et al., Inorg. Chem., 2014, vol. 53, p. 8088.

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Ogawa, H., Mori, K., Murashima, K., et al., Inorg. Chem., 2016, vol. 55, p. 717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Atzori, M., Serpe, A., Deplano, P., et al., Inorg. Chem. Front., 2015, vol. 2, p. 108.

    Article  CAS  Google Scholar 

  102. 102

    Biswas, R., Mukherjee, S., Ghosh, S., et al., Inorg. Chem. Commun., 2015, vol. 56, p. 108.

    Article  CAS  Google Scholar 

  103. 103

    Desplanches, C., Ruiz, E., Rodríguez-Fortea, A., et al., J. Am. Chem. Soc., 2002, vol. 124, p. 5197.

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Desplanches, C., Ruiz, E., and Alvarez, S., Chem. Commun., 2002, p. 2614.

  105. 105

    Bandeira, N.A.G. and Guennic, B.L., J. Phys. Chem. A, 2012, vol. 116, p. 3465.

    Article  CAS  PubMed  Google Scholar 

  106. 106

    Bandeira, N.A.G., Maynau, D., Robert, V., et al., Inorg. Chem., 2013, vol. 52, p. 7980.

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Perić, M., Zlatar, M., Grubišić, S., et al., Polyhedron, 2012, vol. 42, p. 89.

  108. 108

    Rakitin, Yu.V., Kalinnikov, V.T., Khodasevich, S.G., and Novotortsev, V.M., Russ. J. Coord. Chem., 2007, vol. 33, no. 8, p. 551. https://doi.org/10.1134/S1070328407080015

    Article  CAS  Google Scholar 

  109. 109

    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Inorg. Chim. Acta, 2013, vol. 405, p. 169.

    Article  CAS  Google Scholar 

  110. 110

    Larin, G.M., Shul’gin, V.F., Mel’nikova, E.D., Zub, V.Y., and Rakitin, Yu.V., Russ. Chem. Bull., Int. Ed., 2002, vol. 51, no. 4, p. 632.

  111. 111

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 12, p. 849. https://doi.org/10.1134/S1070328413110079

    Article  CAS  Google Scholar 

  112. 112

    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Struct. Chem., 2015, vol. 56, no. 1, p. 102.

    Article  CAS  Google Scholar 

  113. 113

    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Gen. Chem., 2013, vol. 83, no. 10, p. 1928.

    Article  CAS  Google Scholar 

  114. 114

    Levchenkov, S.I., Popov, L.D., Efimov, N.N., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 9, p. 1129. https://doi.org/10.1134/S0036023615040129

    Article  CAS  Google Scholar 

  115. 115

    Larin, G.M., Minin, V.V., and Shul’gin, V.F., Russ. Chem. Rev. 2008, vol. 77, no. 5, p. 451.

    Article  CAS  Google Scholar 

  116. 116

    Almáši, M., Vargová, Z., Gyepes, R., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 118.

    Article  CAS  Google Scholar 

  117. 117

    Qian, J., Hu, J., Yoshikawa, H., et al., Eur. J. Inorg. Chem., 2015, p. 2110.

  118. 118

    Qin, J.-H., Chang, X.-H., Ma, L.-F., et al., Inorg. Chem. Commun., 2015, vol. 41, p. 92.

    Article  CAS  Google Scholar 

  119. 119

    Song, J.H., Lim, K.S., Ryu, D.W., et al., Inorg. Chem., 2014, vol. 53, p. 7936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Tan, X., Ji, X., and Zheng, J.-M., Inorg. Chem. Commun., 2015, vol. 60, p. 27.

    Article  CAS  Google Scholar 

  121. 121

    Sessoli, R. and Powell, A., Coord. Chem. Rev., 2009, vol. 253, p. 2328.

    Article  CAS  Google Scholar 

  122. 122

    Tan, X., Ji, X., and Zheng, J.-M., Inorg. Chem. Commun., 2015, vol. 60, p. 27.

    Article  CAS  Google Scholar 

  123. 123

    Sessoli, R. and Powell, A., Coord. Chem. Rev., 2009, vol. 253, p. 232.

    Article  CAS  Google Scholar 

  124. 124

    Adams, C.J., Kurawa, M.A., Lusi, M., et al., CrystEngComm, 2008, vol. 10, p. 1790.

    Article  CAS  Google Scholar 

  125. 125

    Chang, M., Chung, M., Lee, B.S., et al., Nanosci. Nanotechnol., 2006, vol. 6, p. 3338.

    Article  Google Scholar 

  126. 126

    Kang, S.G., Kim, H., and Bang, S., Inorg. Chim. Acta, 2013, vol. 396, p. 10.

    Article  CAS  Google Scholar 

  127. 127

    Coronado, E. and Day, P., Chem. Rev., 2004, vol. 104, p. 5419.

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Liu, C.M., Xiong, R.G., Zhang, D.Q., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 4044.

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Lu, Z., Fan, T., Guo, W., et al., Inorg. Chim. Acta, 2013, vol. 400, p. 191.

    Article  CAS  Google Scholar 

  130. 130

    Henkel, G. and Krebs, B., Chem. Rev., 2004, vol. 104, p. 801.

    Article  CAS  PubMed  Google Scholar 

  131. 131

    Tjioe, L., Meininger, A., Joshi, T., et al., Inorg. Chem., 2011, vol. 50, p. 4327.

    Article  CAS  PubMed  Google Scholar 

  132. 132

    Wegner, R., Gottschaldt, M., Görls, H., et al., Chem.-Eur. J., 2001, vol. 7, p. 2143.

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Diaz-Requejo, M.M. and Pérez, P.J., Chem. Rev., 2008, vol. 108, p. 3379.

    Article  CAS  PubMed  Google Scholar 

  134. 134

    Safaei, E., Kabir, M.M., Wojtczak, A., et al., Inorg. Chim. Acta, 2011, vol. 366, p. 275.

    Article  CAS  Google Scholar 

  135. 135

    Lu, J.W., Huang, Y.H., Lo, S., et al., Inorg. Chem. Commun., 2007, vol. 10, p. 1210.

    Article  CAS  Google Scholar 

  136. 136

    Monfared, H.H., Sanchiz, J., Kalantari, Z., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 3791.

    Article  CAS  Google Scholar 

  137. 137

    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., J. Mater. Chem., 2006, vol. 16, p. 2729.

    Article  Google Scholar 

  138. 138

    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., Electronic Structure and Magnetic Behavior in Polynuclear Transition-Metal Compounds, Weinheim: Wiley-VCH, 2001, vol. 1.

    Google Scholar 

  139. 139

    Ruiz, E., Rodríguez-Fortea, A., Alemany, P., et al., Polyhedron, 2001, vol. 20, p. 1323.

    Article  CAS  Google Scholar 

  140. 140

    Mergehenn, R. and Haase, W., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, vol. 33, p. 1877.

    Article  Google Scholar 

  141. 141

    Tercero, J., Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., and Alemany, P., J. Mater. Chem., 2006, vol. 16, p. 2729.

    Article  CAS  Google Scholar 

  142. 142

    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., Electronic Structure and Magnetic Behavior in Polynuclear Transition-Metal Compounds, Weinheim: Wiley-VCH, 2001, vol. 2, p. 227.

    Google Scholar 

  143. 143

    Ruiz, E., Rodríguez-Fortea, A., Alemany, P., et al., Polyhedron, 2001, vol. 20, p. 1323.

    Article  CAS  Google Scholar 

  144. 144

    Scheurer, A., Korzekwa, J., Nakajima, T., et al., Eur. J. Inorg. Chem., 2015, vol. 2015, p. 1892.

    Article  CAS  Google Scholar 

  145. 145

    Carter, K.P., Thomas, K.E., Pope, S.J.A., et al., Inorg. Chem., 2016, vol. 55, p. 6902.

    Article  CAS  PubMed  Google Scholar 

  146. 146

    Costes, J.-P., Duhayon, C., and Vendier, L., Inorg. Chem., 2014, vol. 53, p. 2181.

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Li, Y., Guo, Y., Tian, H., et al., Inorg. Chem. Commun., 2014, vol. 43, p. 135.

    Article  CAS  Google Scholar 

  148. 148

    Tian, C.-B., He, C., Han, Y.-H., et al., Inorg. Chem., 2015, vol. 54, p. 2560.

    Article  CAS  PubMed  Google Scholar 

  149. 149

    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 2, p. 69. https://doi.org/10.1134/S1070328414020055

    Article  CAS  Google Scholar 

  150. 150

    Gao, Y.-Z., Zhang, Y.-A., and Zhang, J., Inorg. Chem. Commun., 2015, vol. 54, p. 85.

    Article  CAS  Google Scholar 

  151. 151

    Dias, S.S.P. and Kirillova, M.V., André, V., et al., Inorg. Chem., 2015, vol. 54, p. 5204.

    Article  CAS  PubMed  Google Scholar 

  152. 152

    Gungor, E., Kara, H., Colacio, E., et al., Eur. J. Inorg. Chem., 2014, p. 1552.

  153. 153

    Bikas, R., Hosseini-Monfared, H., Siczek, M., et al., Inorg. Chem. Commun., 2015, vol. 62, p. 60.

    Article  CAS  Google Scholar 

  154. 154

    Reger, D.L., Pascui, A.E., Pellechia, P.J., et al., Inorg. Chem., 2014, vol. 53, no. 9, p. 4325.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out in the framework of the development program of the Southern Federal University (internal grant no. VnGr-07/2017-29).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Lukov.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I. et al. Controlled Molecular Magnetism of Bi- and Polynuclear Transition Metal Complexes Based on Hydrazones, Azomethines, and Their Analogs. Russ J Coord Chem 45, 163–187 (2019). https://doi.org/10.1134/S1070328419030060

Download citation

Keywords:

  • magnetochemistry
  • exchange-bound complexes
  • quantum chemical calculations
  • exchange parameters
  • magnetostructural relations
  • hydrazones
  • azomethines
  • molecular magnetics