Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 3, pp 163–187 | Cite as

Controlled Molecular Magnetism of Bi- and Polynuclear Transition Metal Complexes Based on Hydrazones, Azomethines, and Their Analogs

  • V. V. LukovEmail author
  • I. N. Shcherbakov
  • S. I. Levchenkov
  • Yu. P. Tupolova
  • L. D. Popov
  • I. V. Pankov
  • S. V. Posokhova
Article
  • 53 Downloads

Abstract

The possibilities of the magnetochemical method for the description of structures and properties of bi- and tetranuclear metallochelates and supramolecular architectures based on coordination compounds with restricted types of ligand systems, mainly hydrazones, azomethines, and their analogs, are reviewed. The known published data for the bi- and polynuclear complexes, whose paramagnetic centers are bound by both intra- and intermolecular exchange interactions, are systematized. A relationship between specific features of the electronic and geometric structures of the complexes and the character of the exchange effects is considered. Magnetostructural relations in the discussed compounds are systematized. The compounds discussed are important model objects for the development of the strategy for the targeted design of one-, two-, and three-dimensional magnetically ordered structures.

Keywords:

magnetochemistry exchange-bound complexes quantum chemical calculations exchange parameters magnetostructural relations hydrazones azomethines molecular magnetics 

Notes

ACKNOWLEDGMENTS

This work was carried out in the framework of the development program of the Southern Federal University (internal grant no. VnGr-07/2017-29).

REFERENCES

  1. 1.
    Itoh, K. and Kinoshita, M., Molecular Magnetism: New Magnetic Materials, Tokio: Kodansha and Gordon & Breach Science, 2000.Google Scholar
  2. 2.
    Magnetism: Molecules to Materials: Models and Experiments, Miller J.S. and Drillon, M., Eds., Weimheim: Wiley-VCH, 2001.Google Scholar
  3. 3.
    Launay, J.P. and Verdaguer, M., Electrons in Molecules: From Basic Principles to Molecular Electronics, Oxford: Oxford University, 2014.Google Scholar
  4. 4.
    Joachim, C., Gimzewski, J.K., and Aviram, A., Nature, 2000, vol. 408, p. 541.CrossRefPubMedGoogle Scholar
  5. 5.
    Park, J., Pasupathy, A.N., Goldsmith, J.I., et al., Nature, 2002, vol. 417, p. 722.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith, R.H.M., Noat, Y., Untiedt, C., et al., Nature, 2002, vol. 419, p. 906.CrossRefGoogle Scholar
  7. 7.
    Ng, M.K., Lee, D.C., and Yu, L., J. Am. Chem. Soc., 2002, vol. 124, p. 11862.CrossRefPubMedGoogle Scholar
  8. 8.
    Carrol, R.L. and Gorman, C.B., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 4378.CrossRefGoogle Scholar
  9. 9.
    Lippard, S.J. and Berg, J.M., Principles of Bioinorganic Chemistry, California: Univ. Sci. Books, Mill Valley, 1994.Google Scholar
  10. 10.
    Que, L., Jr. and Dong, Y., Acc. Chem. Res., 1996, vol. 29, p. 190.CrossRefGoogle Scholar
  11. 11.
    Law, N.A., Caudle, M.T., and Pecoraro, V.L., Adv. Inorg. Chem., 1998, vol. 46, p. 305.CrossRefGoogle Scholar
  12. 12.
    Wu, A.J., Penner-Hahn, J.E., and Pecoraro, V.L., Chem. Rev., 2004, vol. 104, p. 903.CrossRefPubMedGoogle Scholar
  13. 13.
    Herrero, C., Lassalle-Kaiser, B., Leibl, W., et al., Coord. Chem. Rev., 2008, no. 252, p. 456.Google Scholar
  14. 14.
    Kärkäs, M.D., Verho, O., Johnston, E.V., et al., Chem. Rev., 2014, vol. 114, p. 11863.CrossRefPubMedGoogle Scholar
  15. 15.
    Gerey, B., Gouré, E., Fortage, J., et al., Coord. Chem. Rev., 2016, no. 319, p. 1.Google Scholar
  16. 16.
    Engelmann, X., Monte-Pérez, I., and Ray, K., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 7632.CrossRefGoogle Scholar
  17. 17.
    Ferrando-Soria, J., Vallejo, J., Castellano, M., et al., Coord. Chem. Rev., 2017, vol. 339, p. 17.CrossRefGoogle Scholar
  18. 18.
    Clemente-León, M., Coronado, E., Martí-Gastaldo, C., et al., Chem. Soc. Rev., 2011, vol. 40, p. 473.CrossRefPubMedGoogle Scholar
  19. 19.
    Muñoz, M.C. and Real, J.A., Coord. Chem. Rev., 2011, vol. 255, p. 2068.CrossRefGoogle Scholar
  20. 20.
    Guo, J.F., Yeng, W.F., and Gao, S., Eur. J. Inorg. Chem., 2008, p. 158.Google Scholar
  21. 21.
    Coronado, E. and Mínguez-Espallargas, G., Chem. Soc. Rev., 2013, vol. 42, p. 1525.CrossRefPubMedGoogle Scholar
  22. 22.
    Grancha, T., Ferrando-Soria, J., Castellano, M., et al., Chem. Commun., 2014, vol. 50, p. 7569.CrossRefGoogle Scholar
  23. 23.
    Ouahab, L., Multifunctional Molecular Materials, Singapore: Pan Standford, 2013.CrossRefGoogle Scholar
  24. 24.
    Ferrando-Soria, J., Ruiz-García, R., Cano, J., et al., Chem.-Eur. J., 2012, vol. 18, p. 1608.CrossRefPubMedGoogle Scholar
  25. 25.
    Sessoli, R., Boulon, M.-E., Caneschi, A., et al., Nat. Phys., 2015, vol. 10, no. 1, p. 69.CrossRefGoogle Scholar
  26. 26.
    Chorazy, S., Nakabayashi, K., Ohkoshi, S., et al., Chem. Mater., 2014, vol. 26, p. 4072.CrossRefGoogle Scholar
  27. 27.
    Pardo, E., Train, C., Gontard, G., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 15328.CrossRefPubMedGoogle Scholar
  28. 28.
    Risset, O.N., Quintero, P.A., Brinzari, T.V., et al., J. Am. Chem. Soc., 2014, vol. 136, p. 15660.CrossRefPubMedGoogle Scholar
  29. 29.
    Darago, L.E., Aubrey, M.L., Yu, C.J., et al., J. Am. Chem. Soc., 2015, vol. 137, p. 15703.CrossRefPubMedGoogle Scholar
  30. 30.
    Jeon, I.-R., Sun, L., Negru, B., et al., J. Am. Chem. Soc., 2016, vol. 138, p. 6583.CrossRefPubMedGoogle Scholar
  31. 31.
    Pinkowicz, D., Rams, M., Misek, M., et al., J. Am. Chem. Soc., 2015, vol. 137, p. 8795.CrossRefPubMedGoogle Scholar
  32. 32.
    Romero-Morcillo, T., Dela Pinta, D., Callejo, L.M., et al., Chem.-Eur. J., 2015, no. 21, p. 12112.Google Scholar
  33. 33.
    Trzop, E., Zhang, D., Pineiro-Lopez, L., et al., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 8675.CrossRefGoogle Scholar
  34. 34.
    Clements, J.E., Price, J.R., Neville, S.M., et al., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 15105.CrossRefGoogle Scholar
  35. 35.
    Reed, D.A., Xiao, D.J., Gonzalez, M.I., et al., J. Am. Chem. Soc., 2016, vol. 138, p. 5594.CrossRefPubMedGoogle Scholar
  36. 36.
    Hay, J.P., Thibeault, J.C., and Hoffmann, R., J. Am. Chem. Soc., 1975, vol. 97, p. 4884.CrossRefGoogle Scholar
  37. 37.
    Kahn, O. and Briat, B., J. Chem. Soc., Faraday Trans. 2, 1976, vol. 268, p. 79.Google Scholar
  38. 38.
    Girerd, J.J., Joumaux, Y., and Kahn, O., Chem. Phys. Lett., 1981, vol. 82, p. 534.CrossRefGoogle Scholar
  39. 39.
    Kahn, O., Galy, J., Journaux, Y., et al., J. Am. Chem. Soc., 1982, vol. 104, p. 2165.CrossRefGoogle Scholar
  40. 40.
    Julve, M., Verdaguer, M., Gleizes, A., et al., Inorg. Chem., 1984, vol. 23, p. 3808.CrossRefGoogle Scholar
  41. 41.
    Julve, M., Faus, J., Verdaguer, M., et al., J. Am. Chem. Soc., 1984, vol. 106, p. 8306.CrossRefGoogle Scholar
  42. 42.
    Willet, R., Gatteschi, D., and Kahn, O., Magneto-Structural Correlations in Exchange-Coupled Systems (NATO ASI Series C), Dordrecht: D. Reidel., 1985.Google Scholar
  43. 43.
    Kahn, O., Angew. Chem., Int. Ed. Engl., 1985, vol. 24, p. 834.CrossRefGoogle Scholar
  44. 44.
    Kahn, O., Z. Anorg. Allg. Chem., 1987, vol. 68, p. 89.Google Scholar
  45. 45.
    Blondin, G. and Girerd, J.J., Chem. Rev., 1990, vol. 90, p. 1359.CrossRefGoogle Scholar
  46. 46.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.  https://doi.org/10.1134/S1070328410060011 CrossRefGoogle Scholar
  47. 47.
    Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 1, p. 1.  https://doi.org/10.1134/S1070328417010055 CrossRefGoogle Scholar
  48. 48.
    Kalinnikov, V.T. and Rakitin, Yu.V. Vvedenie v magnetokhimiyu. Metod staticheskoi magnitnoi vospriimchivosti (Introduction to Magnetochemistry. Static Magnetic Susceptibility Method), Moscow: Nauka, 1980.Google Scholar
  49. 49.
    Rakitin, Yu.V. and Kalinnikov, V.T. Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Pe-tersburg: Nauka, 1994.Google Scholar
  50. 50.
    Kalinnikov, V.T., Rakitin, Yu.V., and Novotortsev, V.M., Russ. Chem. Rev., 2003, vol. 72, no. 12, p. 995.CrossRefGoogle Scholar
  51. 51.
    Shchegolkov, E.V., Burgart, Ya.V., Khudina, O.G., et al., Russ. Chem. Rev., 2010, vol. 79, no. 1, p. 31.CrossRefGoogle Scholar
  52. 52.
    Hakki, E., Safak, C., Mevlut, E., et al., J. Indian. Chem. Soc., 1989, vol. 66, p. 45.Google Scholar
  53. 53.
    Mishra, P., Gupta, P.N., and Shakya, A.K., J. Indian. Chem. Soc., 1991, vol. 68, p. 618.Google Scholar
  54. 54.
    Likhate, M.A. and Fernandes, P.S., J. Indian. Chem. Soc., 1990, vol. 67, p. 862.Google Scholar
  55. 55.
    Badr, M.Z.A., Mahmoud, M.A., Mahgoub, S.A., et al., Bull. Pol. Acad. Sci. Chem., 1989, vol. 37, p. 185.Google Scholar
  56. 56.
    Revankar, V.K., Arali, V.H., and Mehale, V.B., Indian. J. Chem. A, 1990, vol. 29, p. 889.Google Scholar
  57. 57.
    Bartolucci, C., Cellai, L., Patrizia, F., et al., Farmaco, 1992, vol. 41, p. 945.Google Scholar
  58. 58.
    Vicini, P., Incerti, M., Doychinova, I.A., et al., Eur. J. Med. Chem., 2006, vol. 41, p. 624.CrossRefPubMedGoogle Scholar
  59. 59.
    Odashima, T., Yamaguchi, M., and Ishii, H., Microchim. Acta, 1991, vol. 1, p. 267.CrossRefGoogle Scholar
  60. 60.
    Sakamoto, H., Ishikawa, J., Nakagamo, H., et al., Chem. Lett., 1992, vol. 21, p. 481.CrossRefGoogle Scholar
  61. 61.
    Levchenkov, S.I., Popov, L.D., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2014, vol. 84, no. 10, p. 1970.CrossRefGoogle Scholar
  62. 62.
    Abramenko, V.L., Garnovskii, A.D., Abramenko, Yu.V., Koord. Khim., 1994, vol. 20, no. 1, p. 39.Google Scholar
  63. 63.
    Lukov, V.V., Kogan, V.A., Bogatyreva, E.V., et al., Zh. Neorg. Khim., 1989, vol. 34, no. 10, p. 2554.Google Scholar
  64. 64.
    Bogatyreva, E.V., Kogan, V.A., Lukov, V.V., et al., Zh. Neorg. Khim., 1990, vol. 35, no. 8, p. 2010.Google Scholar
  65. 65.
    Kogan, V.A. and Lukov, V.V., Koord. Khim., 1993, vol. 19, no. 6, p. 476.Google Scholar
  66. 66.
    Lukov, V.V., Tupolova, Yu.P., Kogan, V.A., et al., Russ. J. Coord. Chem., 2003, vol. 29, no. 5, p. 335.CrossRefGoogle Scholar
  67. 67.
    Levchenkov, S.I., Kogan, V.A., and Lukov V.V., Zh. Neorg. Khim., 1993, vol. 38, no. 12, p. 1992.Google Scholar
  68. 68.
    Lukov, V.V., Levchenkov, S.I., and Kogan, V.A., Zh. Neorg. Khim., 1997, vol. 42, no. 4, p. 606.Google Scholar
  69. 69.
    Lukov, V.V., Levchenkov, S.I., and Kogan V.A., Koord. Khim., 1998, vol. 24, no. 12, p. 946.Google Scholar
  70. 70.
    Kogan, V.A., Lukov, V.V., Levchenkov, S.I., et al., Mendeleev Commun., 1998, no. 4, p. 145.Google Scholar
  71. 71.
    Iskander, M.F., El-Sayed, L., Salem, N.M.H., et al., Polyhedron, 2004, vol. 23, no. 1, p. 23.CrossRefGoogle Scholar
  72. 72.
    Starikov, A.G., Kogan, V.A., Lukov, V.V., et al., Russ. J. Coord. Chem., 2009, vol. 35, no. 8, p. 616. doi 10.1134/S1070328409080090CrossRefGoogle Scholar
  73. 73.
    Tandon, S.S., Thompson, L.K., and Hynes, R.C., Inorg. Chem., 1992, vol. 31, p. 2210.CrossRefGoogle Scholar
  74. 74.
    Brooker, S., Davidson, T.C., Hay, S.J., et al., Coord. Chem. Rev., 2001, vol. 216, p. 3.CrossRefGoogle Scholar
  75. 75.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493.CrossRefGoogle Scholar
  76. 76.
    Sangeetha, N.R., Baradi, R., Gupta, R., et al., Polyhedron, 1999, vol. 18, p. 1425.CrossRefGoogle Scholar
  77. 77.
    Haba, P.M., Diouf, O., Sy, A., et al., Z. Kristallogr. Cryst. Mater., 2005, vol. 220, p. 479.Google Scholar
  78. 78.
    Chan, S.C., Koh, L.L., Leung, P.-H., et al., Inorg. Chim. Acta, 1995, vol. 236, p. 101.CrossRefGoogle Scholar
  79. 79.
    Roth, A., Buchholz, A., Gärtner, V., et al., Z. Anorg. Allgem. Chem., 2007, vol. 633, p. 2009.CrossRefGoogle Scholar
  80. 80.
    Simonov, Yu.A., Bourosh, P.N., Yampol’skaya, M.A. et al., Koord. Khim., 1990, vol. 16, no. 8, p. 1072.Google Scholar
  81. 81.
    Yamamoto, T., X-ray Spectrom., 2008, vol. 37, p. 572.CrossRefGoogle Scholar
  82. 82.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., et al., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectoscopic Method for Studying the Structure of Amorphous Solids: EXAFS Spectroscopy) Novosibirsk: Nauka. Sib. Otd-nie, 1988.Google Scholar
  83. 83.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 483. doi 10.1134/S1070328411060078CrossRefGoogle Scholar
  84. 84.
    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, no. 1, p. 81.CrossRefGoogle Scholar
  85. 85.
    Kogan, V.A., Levchenkov, S.I., Popov, L.D., et al., Ros. Khim. Zh., 2009, vol. 53, no. 1, p. 86.Google Scholar
  86. 86.
    Tandon, S.S., Thompson, L.K., and Hynes, R.C., Inorg. Chem., 1992, vol. 31, p. 2210. CrossRefGoogle Scholar
  87. 87.
    Abraham, F., Lagrenee, M., Sueur, S., et al., J. Chem. Soc., Dalton Trans., 1991, p. 1443.Google Scholar
  88. 88.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 12, p. 2501.CrossRefGoogle Scholar
  89. 89.
    Popov, L.D., Mishchenko, A.V., Tupolova, Yu.P., et al., Russ. J. Gen. Chem., 2011, vol, vol. 81, no. 8, p. 1691.Google Scholar
  90. 90.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Gen. Chem., 2012, vol. 82, no. 3, p. 465.CrossRefGoogle Scholar
  91. 91.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., et al., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.CrossRefGoogle Scholar
  92. 92.
    Popov, L.D., Tupolova, Yu.P., Lukov, V.V., et al., Inorg. Chim. Acta, 2009, vol. 362, no. 6, p. 1673.CrossRefGoogle Scholar
  93. 93.
    Tupolova, Yu.P., Popov, L.D., Lukov, V.V., et al., Z. Anorg. Allg. Chem., 2009, vol. 635, no. 3, p. 530.CrossRefGoogle Scholar
  94. 94.
    Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., Russ. J. Struct. Chem., 2012, vol. 53, no. 2, p. 295.CrossRefGoogle Scholar
  95. 95.
    Castro, I., Calatayud, M.L., Barros, W.P., et al., Inorg. Chem., 2014, vol. 53, p. 5759.CrossRefPubMedGoogle Scholar
  96. 96.
    Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 69.  https://doi.org/10.1134/S1070328415020098 CrossRefGoogle Scholar
  97. 97.
    Pavlishchuk, A.V., Satska, Yu.A., Kolotilov, S.V., et al., Cur. Inorg. Chem., 2015, vol. 5, p. 5.CrossRefGoogle Scholar
  98. 98.
    Hazra, S., Karmakar, A., Silva, M., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 113.CrossRefGoogle Scholar
  99. 99.
    Liu, X., Cen, P., Li, H., et al., Inorg. Chem., 2014, vol. 53, p. 8088.CrossRefPubMedGoogle Scholar
  100. 100.
    Ogawa, H., Mori, K., Murashima, K., et al., Inorg. Chem., 2016, vol. 55, p. 717.CrossRefPubMedGoogle Scholar
  101. 101.
    Atzori, M., Serpe, A., Deplano, P., et al., Inorg. Chem. Front., 2015, vol. 2, p. 108.CrossRefGoogle Scholar
  102. 102.
    Biswas, R., Mukherjee, S., Ghosh, S., et al., Inorg. Chem. Commun., 2015, vol. 56, p. 108.CrossRefGoogle Scholar
  103. 103.
    Desplanches, C., Ruiz, E., Rodríguez-Fortea, A., et al., J. Am. Chem. Soc., 2002, vol. 124, p. 5197.CrossRefPubMedGoogle Scholar
  104. 104.
    Desplanches, C., Ruiz, E., and Alvarez, S., Chem. Commun., 2002, p. 2614.Google Scholar
  105. 105.
    Bandeira, N.A.G. and Guennic, B.L., J. Phys. Chem. A, 2012, vol. 116, p. 3465.CrossRefPubMedGoogle Scholar
  106. 106.
    Bandeira, N.A.G., Maynau, D., Robert, V., et al., Inorg. Chem., 2013, vol. 52, p. 7980.CrossRefPubMedGoogle Scholar
  107. 107.
    Perić, M., Zlatar, M., Grubišić, S., et al., Polyhedron, 2012, vol. 42, p. 89.Google Scholar
  108. 108.
    Rakitin, Yu.V., Kalinnikov, V.T., Khodasevich, S.G., and Novotortsev, V.M., Russ. J. Coord. Chem., 2007, vol. 33, no. 8, p. 551.  https://doi.org/10.1134/S1070328407080015 CrossRefGoogle Scholar
  109. 109.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Inorg. Chim. Acta, 2013, vol. 405, p. 169.CrossRefGoogle Scholar
  110. 110.
    Larin, G.M., Shul’gin, V.F., Mel’nikova, E.D., Zub, V.Y., and Rakitin, Yu.V., Russ. Chem. Bull., Int. Ed., 2002, vol. 51, no. 4, p. 632.Google Scholar
  111. 111.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 12, p. 849.  https://doi.org/10.1134/S1070328413110079 CrossRefGoogle Scholar
  112. 112.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Russ. J. Struct. Chem., 2015, vol. 56, no. 1, p. 102.CrossRefGoogle Scholar
  113. 113.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Gen. Chem., 2013, vol. 83, no. 10, p. 1928.CrossRefGoogle Scholar
  114. 114.
    Levchenkov, S.I., Popov, L.D., Efimov, N.N., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 9, p. 1129.  https://doi.org/10.1134/S0036023615040129 CrossRefGoogle Scholar
  115. 115.
    Larin, G.M., Minin, V.V., and Shul’gin, V.F., Russ. Chem. Rev. 2008, vol. 77, no. 5, p. 451.CrossRefGoogle Scholar
  116. 116.
    Almáši, M., Vargová, Z., Gyepes, R., et al., Inorg. Chem. Commun., 2014, vol. 46, p. 118.CrossRefGoogle Scholar
  117. 117.
    Qian, J., Hu, J., Yoshikawa, H., et al., Eur. J. Inorg. Chem., 2015, p. 2110.Google Scholar
  118. 118.
    Qin, J.-H., Chang, X.-H., Ma, L.-F., et al., Inorg. Chem. Commun., 2015, vol. 41, p. 92.CrossRefGoogle Scholar
  119. 119.
    Song, J.H., Lim, K.S., Ryu, D.W., et al., Inorg. Chem., 2014, vol. 53, p. 7936.CrossRefPubMedGoogle Scholar
  120. 120.
    Tan, X., Ji, X., and Zheng, J.-M., Inorg. Chem. Commun., 2015, vol. 60, p. 27.CrossRefGoogle Scholar
  121. 121.
    Sessoli, R. and Powell, A., Coord. Chem. Rev., 2009, vol. 253, p. 2328.CrossRefGoogle Scholar
  122. 122.
    Tan, X., Ji, X., and Zheng, J.-M., Inorg. Chem. Commun., 2015, vol. 60, p. 27.CrossRefGoogle Scholar
  123. 123.
    Sessoli, R. and Powell, A., Coord. Chem. Rev., 2009, vol. 253, p. 232.CrossRefGoogle Scholar
  124. 124.
    Adams, C.J., Kurawa, M.A., Lusi, M., et al., CrystEngComm, 2008, vol. 10, p. 1790.CrossRefGoogle Scholar
  125. 125.
    Chang, M., Chung, M., Lee, B.S., et al., Nanosci. Nanotechnol., 2006, vol. 6, p. 3338.CrossRefGoogle Scholar
  126. 126.
    Kang, S.G., Kim, H., and Bang, S., Inorg. Chim. Acta, 2013, vol. 396, p. 10.CrossRefGoogle Scholar
  127. 127.
    Coronado, E. and Day, P., Chem. Rev., 2004, vol. 104, p. 5419.CrossRefPubMedGoogle Scholar
  128. 128.
    Liu, C.M., Xiong, R.G., Zhang, D.Q., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 4044.CrossRefPubMedGoogle Scholar
  129. 129.
    Lu, Z., Fan, T., Guo, W., et al., Inorg. Chim. Acta, 2013, vol. 400, p. 191.CrossRefGoogle Scholar
  130. 130.
    Henkel, G. and Krebs, B., Chem. Rev., 2004, vol. 104, p. 801.CrossRefPubMedGoogle Scholar
  131. 131.
    Tjioe, L., Meininger, A., Joshi, T., et al., Inorg. Chem., 2011, vol. 50, p. 4327.CrossRefPubMedGoogle Scholar
  132. 132.
    Wegner, R., Gottschaldt, M., Görls, H., et al., Chem.-Eur. J., 2001, vol. 7, p. 2143.CrossRefPubMedGoogle Scholar
  133. 133.
    Diaz-Requejo, M.M. and Pérez, P.J., Chem. Rev., 2008, vol. 108, p. 3379.CrossRefPubMedGoogle Scholar
  134. 134.
    Safaei, E., Kabir, M.M., Wojtczak, A., et al., Inorg. Chim. Acta, 2011, vol. 366, p. 275.CrossRefGoogle Scholar
  135. 135.
    Lu, J.W., Huang, Y.H., Lo, S., et al., Inorg. Chem. Commun., 2007, vol. 10, p. 1210.CrossRefGoogle Scholar
  136. 136.
    Monfared, H.H., Sanchiz, J., Kalantari, Z., et al., Inorg. Chim. Acta, 2009, vol. 362, p. 3791.CrossRefGoogle Scholar
  137. 137.
    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., J. Mater. Chem., 2006, vol. 16, p. 2729.CrossRefGoogle Scholar
  138. 138.
    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., Electronic Structure and Magnetic Behavior in Polynuclear Transition-Metal Compounds, Weinheim: Wiley-VCH, 2001, vol. 1.CrossRefGoogle Scholar
  139. 139.
    Ruiz, E., Rodríguez-Fortea, A., Alemany, P., et al., Polyhedron, 2001, vol. 20, p. 1323.CrossRefGoogle Scholar
  140. 140.
    Mergehenn, R. and Haase, W., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1977, vol. 33, p. 1877.CrossRefGoogle Scholar
  141. 141.
    Tercero, J., Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., and Alemany, P., J. Mater. Chem., 2006, vol. 16, p. 2729.CrossRefGoogle Scholar
  142. 142.
    Ruiz, E., Alvarez, S., Rodríguez-Fortea, A., et al., Electronic Structure and Magnetic Behavior in Polynuclear Transition-Metal Compounds, Weinheim: Wiley-VCH, 2001, vol. 2, p. 227.CrossRefGoogle Scholar
  143. 143.
    Ruiz, E., Rodríguez-Fortea, A., Alemany, P., et al., Polyhedron, 2001, vol. 20, p. 1323.CrossRefGoogle Scholar
  144. 144.
    Scheurer, A., Korzekwa, J., Nakajima, T., et al., Eur. J. Inorg. Chem., 2015, vol. 2015, p. 1892.CrossRefGoogle Scholar
  145. 145.
    Carter, K.P., Thomas, K.E., Pope, S.J.A., et al., Inorg. Chem., 2016, vol. 55, p. 6902.CrossRefPubMedGoogle Scholar
  146. 146.
    Costes, J.-P., Duhayon, C., and Vendier, L., Inorg. Chem., 2014, vol. 53, p. 2181.CrossRefPubMedGoogle Scholar
  147. 147.
    Li, Y., Guo, Y., Tian, H., et al., Inorg. Chem. Commun., 2014, vol. 43, p. 135.CrossRefGoogle Scholar
  148. 148.
    Tian, C.-B., He, C., Han, Y.-H., et al., Inorg. Chem., 2015, vol. 54, p. 2560.CrossRefPubMedGoogle Scholar
  149. 149.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 2, p. 69.  https://doi.org/10.1134/S1070328414020055 CrossRefGoogle Scholar
  150. 150.
    Gao, Y.-Z., Zhang, Y.-A., and Zhang, J., Inorg. Chem. Commun., 2015, vol. 54, p. 85.CrossRefGoogle Scholar
  151. 151.
    Dias, S.S.P. and Kirillova, M.V., André, V., et al., Inorg. Chem., 2015, vol. 54, p. 5204.CrossRefPubMedGoogle Scholar
  152. 152.
    Gungor, E., Kara, H., Colacio, E., et al., Eur. J. Inorg. Chem., 2014, p. 1552.Google Scholar
  153. 153.
    Bikas, R., Hosseini-Monfared, H., Siczek, M., et al., Inorg. Chem. Commun., 2015, vol. 62, p. 60.CrossRefGoogle Scholar
  154. 154.
    Reger, D.L., Pascui, A.E., Pellechia, P.J., et al., Inorg. Chem., 2014, vol. 53, no. 9, p. 4325.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Lukov
    • 1
    Email author
  • I. N. Shcherbakov
    • 1
  • S. I. Levchenkov
    • 1
    • 2
  • Yu. P. Tupolova
    • 1
  • L. D. Popov
    • 1
  • I. V. Pankov
    • 1
  • S. V. Posokhova
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific Center, Russian Academy of SciencesRostov-on-DonRussia
  3. 3.Azov Black Sea Engineering Institute, Don State Agrarian UniversityZernogradRussia

Personalised recommendations