Russian Journal of Coordination Chemistry

, Volume 44, Issue 4, pp 284–300 | Cite as

Water-Soluble Polynuclear Metallamacrocyclic Copper(II) and Lanthanide(III) Complexes Based on Amino Hydroxamic Acids

  • M. A. Katkova


Data on the synthesis and structure of water-soluble polynuclear copper(II) and lanthanide(III) metallamacrocycles based on amino hydroxamic acids are presented. The structural features of the obtained 15-MC-5 metallacrown aqua complexes and their applicability as NMR contrast agents are considered. Additionally, the applicability as molecular precursors for the synthesis of nano-sized materials was demonstrated for Ce(III) compounds.


water-soluble polynuclear metallamacrocyclic complexes transition metals lanthanides amino hydroxamic acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marmion, C.J., Griffith, D., and Nolan, K.B., Eur. J. Inorg. Chem., 2004, vol. 2004, p. 3003.CrossRefGoogle Scholar
  2. 2.
    Kurzak, B., Kozlowski, H., and Farkas, E., Coord. Chem. Rev., 1992, vol. 114, p. 169.CrossRefGoogle Scholar
  3. 3.
    Gupta, S.P., Chem. Rev., 2015, vol. 115, p. 6427.CrossRefGoogle Scholar
  4. 4.
    Ford, P., Chem. Sci., 2016, vol. 7, p. 2964.CrossRefGoogle Scholar
  5. 5.
    Solomon, E.I., Heppner, D.E., Johnston, E.M., et al., Chem. Rev., 2014, vol. 114, p. 3659.CrossRefGoogle Scholar
  6. 6.
    Sidorov, A.A., Kiskin, M.A., Aleksandrov, G.G., et al., Russ. J. Coord. Chem., 2016, vol. 42, p. 581.CrossRefGoogle Scholar
  7. 7.
    Mezei, G., Zaleski, C.M., and Pecoraro, V.L., Chem. Rev., 2007, vol. 107, p. 4933.CrossRefGoogle Scholar
  8. 8.
    Tegoni, M. and Remelli, M., Coord. Chem. Rev., 2012, vol. 256, p. 289.CrossRefGoogle Scholar
  9. 9.
    Bodwin, J.J., Cutland, A.D., Malkani, R.G., et al., Coord. Chem. Rev., 2001, vols. 216-217, p. 489.CrossRefGoogle Scholar
  10. 10.
    Lah, M.S. and Pecoraro, V.L., J. Am. Chem. Soc., 1989, vol. 111, p. 7258.CrossRefGoogle Scholar
  11. 11.
    Stemmler, A.J., Kampf, J.W., Kirk, M.L., et al., Inorg. Chem., 1999, vol. 38, p. 2807.CrossRefGoogle Scholar
  12. 12.
    Cutland, A.D., Malkani, R.G., Kampf, J.W., et al., Angew. Chem., Int. Ed. Engl., 2000, vol. 39, p. 2689.CrossRefGoogle Scholar
  13. 13.
    Lim, C.S., Kampf, J.W., and Pecoraro, V.L., Inorg. Chem., 2009, vol. 48, p. 5224.CrossRefGoogle Scholar
  14. 14.
    Tegoni, M., Tropiano, M., and Marchio, L., Dalton Trans., 2009, p. 6705.Google Scholar
  15. 15.
    Jankolovits, J., Lim, C.S., Mezei, G., et al., Inorg. Chem., 2012, vol. 51, p. 4527.CrossRefGoogle Scholar
  16. 16.
    Pavlishchuk, A.V., Kolotilov, S.V., Fritsky, I.O., et al., Acta Crystallogr., Sect. C: Cryst Struct. Commun., 2011, vol. 67, p. m255.CrossRefGoogle Scholar
  17. 17.
    Katkova, M.A., Zabrodina, G.S., Muravyeva, M.S., et al., Inorg. Chem. Commun., 2015, vol. 52, p. 31.CrossRefGoogle Scholar
  18. 18.
    Katkova, M.A., Zabrodina, G.S., Muravyeva, M.S., et al., Eur. J. Inorg. Chem., 2015, vol. 2015, p. 5202.CrossRefGoogle Scholar
  19. 19.
    Muravyeva, M.S., Zabrodina, G.S., Samsonov, M.A., et al., Polyhedron, 2016, vol. 114, p. 165.CrossRefGoogle Scholar
  20. 20.
    Kremlev, K.V., Samsonov, M.A., Zabrodina, G.S., et al., Polyhedron, 2016, vol. 114, p. 96.CrossRefGoogle Scholar
  21. 21.
    Katkova, M.A., Zabrodina, G.S., Kremlev, K.V., et al., Mendeleev Commun., 2017, vol. 27, p. 402.CrossRefGoogle Scholar
  22. 22.
    Katkova, M.A., Zabrodina, G.S., Kremlev, K.V., et al., Thin Solid Films, 2017, vol. 628, p. 112.CrossRefGoogle Scholar
  23. 23.
    Parac-Vogt, T.N., Pacco, A., Nockemann, P., et al., Eur. J. Inorg. Chem., 2006, vol. 2006, p. 1466.CrossRefGoogle Scholar
  24. 24.
    Pacco, A., Parac-Vogt, T.N., van Besien, E., et al., Eur. J. Inorg. Chem., 2005, vol. 2005, p. 3303.CrossRefGoogle Scholar
  25. 25.
    Jankolovits, J., Kampf, J.W., and Pecoraro, V.L., Inorg. Chem., 2013, vol. 52, p. 5063.CrossRefGoogle Scholar
  26. 26.
    Parac-Vogt, T.N., Pacco, A., Nockemann, P., et al., Chem.-Eur. J., 2006, vol. 12, p. 204.CrossRefGoogle Scholar
  27. 27.
    Adeva-Andany, M., Lopez-Ojen, M., Funcasta-Calderon, R., et al., Mitochondrion, 2014, vol. 17, p. 76.CrossRefGoogle Scholar
  28. 28.
    Funk, A.M., Finney, K.N.A., Harvey, P., et al., Chem. Sci. J., 2015, vol. 6, p. 1655.CrossRefGoogle Scholar
  29. 29.
    Caravan, P., Farrar, C.T., Frullano, L., et al., Contrast. Media Mol. Imaging, 2009, vol. 4, p. 89.CrossRefGoogle Scholar
  30. 30.
    Caravan, P., Chem. Soc. Rev., 2006, vol. 35, p. 512.CrossRefGoogle Scholar
  31. 31.
    Watanabe, T., Frahm, J., and Michaelis, T., Brain Struct. Funct., 2015, vol. 220, p. 1529.CrossRefGoogle Scholar
  32. 32.
    Caravan, P., Ellison, J.J., McMurry, T.J., et al., Chem. Rev., 1999, vol. 99, p. 2293.CrossRefGoogle Scholar
  33. 33.
    Murav’eva, M.S., Klyuev, E.A., Katkova, M.A., et al., Vest. SPb Gos. Univ. Ser. 4, 2016, vol. 3, no. 61, p. 70.Google Scholar
  34. 34.
    Makarov, S.G., Zabrodina, G.S., Cherkasov, A.V., et al., Macroheterocycles, 2016, vol. 9, p. 263.CrossRefGoogle Scholar
  35. 35.
    Hassner, A. and Stumer, C., Organic Syntheses Based on Name Reactions and Unnamed Reactions, Oxford: Elsevier, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations