Skip to main content
Log in

Supramolecular Heteroleptic Copper(II) Carboxylates: Synthesis, Spectral Characterization, Crystal Structures, and Enzyme Inhibition Assay

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Two new complexes of substituted phenyl acetic acids with CuSO4 · 5H2O and 2,2′-bipyridine (Bipy) with formula [CuL(Bipy)2]L · nH2O, where L = 2-ClC6H4CH2COO (I), 2-CH3-3-NO2C6H3CH2COO (II) and n = 3 (I); 4 (II), have been synthesized. These complexes have been characterized by elemental analysis, FT-IR and X-ray crystal diffraction (CIF file CCDC nos. 1487707 (I), 1487708 (II)). Both complexes are mononuclear and crystallize in the triclinic space group P1̅. In both complexes two molecules of Bipy bind equatorially with metal atom and one molecule of substituted phenyl acetic acid binds at axial position giving rise to a distorted five coordinated geometry around copper atom, while the second oxygen atom of carboxylate ligand appears to occupy the sixth position resulting in highly distorted six coordination environments around metal center in both complexes. However, another molecule of substituted phenyl acetic acid along with water molecules lies as co-crystal within the crystal lattice. Two bipyridine molecules in both complexes are lying in different planes and are oriented at dihedral angle of 63.89(8)° and 74.99(11)° in complexes I and II, respectively. Extensive hydrogen bonding because of water molecules present in crystal lattice plays a vital role in the formation of the 3D structure. Additionally, other weak interactions such as π–π interactions markedly influence the supramolecular structure. An investigation of DNA binding ability of both complexes using UV-visible spectroscopy and anti-diabetic capacity is also presented. Results revealed that synthesized complexes bind with SSDNA through intercalation as well as groove binding mode with Kb values of 2.45 × 104 and 7.72 × 103 M–1 for complex I and II, respectively. Complex II strongly inhibits in-vitro α-glucosidase with IC50 value of 30.4 μM, while complex I moderately inhibits in-vitro α-amylase with IC50 value of 69.9 μM. Acarbose was employed as standard in both assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rafique, S., Idrees, M., Nasim, A., et al., Biotechnol. Mol. Biol. Rev., 2010, vol. 5, p. 38.

    CAS  Google Scholar 

  2. Xie, Q.W., Tong, H.B., and Zhou, M.S., Inorg. Chem. Commun., 2014, vol. 44, p. 37.

    Article  CAS  Google Scholar 

  3. Rentschler, E., Gatteschi, D., Cornia, A., et al., Inorg. Chem., 1996, vol. 35, p. 4427.

    Article  CAS  Google Scholar 

  4. Santini, C., Pellei, M., Gandin, V., et al., Chem. Rev., 2014, vol. 114, p. 815.

    Article  CAS  Google Scholar 

  5. Liu, H., Yang, G.S., Liu, C.B., et al., J. Coord. Chem., 2014, vol. 67, p. 572.

    Article  CAS  Google Scholar 

  6. Yu, X.K., Weng, W.D., Guo, X.X., and Zhang, Y., J. Inorg. Organomet. Polym., 2013, vol. 23, p. 1451.

    Article  CAS  Google Scholar 

  7. Gui, G., Zhou, Y., Chai, Y.Q., et al., Biosens. Bioelectron., 2013, vol. 47, p. 524.

    Article  CAS  Google Scholar 

  8. Marzano, C., Pellei, M., Tisato, F., and Santini, C., Anti-Cancer Agents Med. Chem., 2009, vol. 9, p. 185.

    Article  CAS  Google Scholar 

  9. Easmon, J., Purstinger, G., Heinisch, G., et al., J. Med. Chem., 2001, vol. 44, p. 2164.

    Article  CAS  Google Scholar 

  10. Hernandez, W., Spodine, E., Beyer, L., et al., Bioinorg. Chem. Appl., 2005, vol. 3, p. 299.

    Article  CAS  Google Scholar 

  11. Jevtovic, V., Res. Cancer Tumor, 2014, vol. 3, p. 1.

    Google Scholar 

  12. Hacker, M.P., Douple, E.B., and Krakoff, I.H., J. Med. Chem., 1993, vol. 36, p. 510.

    Article  Google Scholar 

  13. Galanski, M., Jakupec, M.A., and Keppler, B.K., Curr. Med. Chem., 2005, vol. 12, p. 2075.

    Article  CAS  Google Scholar 

  14. Burham, N., Abdel-Azeem, S.M., and El-Shahat, M.F., Central Eur. J. Chem., 2009, vol. 7, p. 576.

    CAS  Google Scholar 

  15. Parmar, N.J., Barad, H.A., Pansuriya, B.R., and Patel, R.A., J. Coord. Chem., 2011, vol. 64, p. 688.

    Article  CAS  Google Scholar 

  16. Iskander, M.F., El Sayed, L., Hefny, A.F.M., and Zayan, S.E., J. Inorg. Nucl. Chem., 1976, vol. 38, p. 2209.

    Article  CAS  Google Scholar 

  17. Wang, X.H., Jia, D.Z., Liang, Y.J., et al., Cancer Lett., 2007, vol. 249, p. 256.

    Article  CAS  Google Scholar 

  18. Brana, M.F., Gradillas, A., Ovalles, A.G., et al., Bioorg. Med. Chem., 2006, vol. 14, p. 9.

    Article  CAS  Google Scholar 

  19. Zoroddu, M.A., Zanetti, S., Pogni, R., and Basosi, R., J. Inorg. Biochem., 1996, vol. 63, p. 291.

    Article  CAS  Google Scholar 

  20. Ruiz, M.L., Perello, J., Servercarrio, R., et al., J. Inorg. Biochem., 1998, vol. 69, p. 231.

    Article  CAS  Google Scholar 

  21. Ramadan, M., J. Inorg. Biochem., 1997, vol. 65, p. 183.

    Article  CAS  Google Scholar 

  22. Sorensen, J.R.J., Metal Ions in Biological Systems, Sigel H., Ed., New York: Marcel Dekker, 1982.

    Google Scholar 

  23. Richardson, B.A., Wood Preservation, London: Chapman & Hall, 1993.

    Google Scholar 

  24. Pohleven, F., Sentjurc, M., Petric, M., and Dagarin, F., Holzforschung, 1994, vol. 48, p. 371.

    Article  CAS  Google Scholar 

  25. Zhu, Y.J., Zhou, H.T., Hu, Y.H., et al., Food Chem., 2011, vol. 124, p. 298.

    Article  CAS  Google Scholar 

  26. Ghorai, P., Kraus, A., Keller, M., et al., J. Med. Chem., 2008, vol. 51, p. 7193.

    Article  CAS  Google Scholar 

  27. Skoutakis, V.A., Carter, C.A., Mickle, T.R., et al., Drug Intel. Clinc. Pharm., 1988, vol. 22, p. 850.

    Article  CAS  Google Scholar 

  28. Wagner, R., Larson, D.P., Beno, D.W.A., et al., J. Med. Chem., 2009, vol. 52, p. 1659.

    Article  CAS  Google Scholar 

  29. Oelschlagel, M., Kaschabek, S.R., Zimmerling, J., et al., Biotech. Reports, 2015, vol. 6, p. 20.

    Article  Google Scholar 

  30. Iqbal, M., Sirajuddin, M., Ali, S., et al., Inorg. Chim. Acta, 2016, vol. 440, p. 129.

    Article  CAS  Google Scholar 

  31. Hafeez, S.T., Tahir, M.N., Ali, S., et al., J. Coord. Chem., 2015, vol. 68, p. 3636.

    Article  CAS  Google Scholar 

  32. Iqbal, M., Ali, S., Tahir, M.N., et al., J. Mol. Struct., 2015, vol. 1093, p. 135.

    Article  CAS  Google Scholar 

  33. Hafeez, S.T., Ali, S., Tahir, M.N., et al., J. Coord. Chem., 2014, vol. 67, p. 2479.

    Article  CAS  Google Scholar 

  34. Thomas, K.R.J., Tharmaraj, P., Chandrasekhar, et al., Polyhedron, 1995, vol. 14, p. 977.

    Article  CAS  Google Scholar 

  35. Bailey, N.A., Fenton, D.E., Moody, R., et al., J. Chem. Soc., Dalton Trans., 1987, p. 2519.

    Google Scholar 

  36. Farrugia, I.J., J. Appl. Cryst., 1999, vol. 32, p. 837.

    Article  CAS  Google Scholar 

  37. Farrugia, I.J., J. Appl. Cryst., 1997, vol. 30, p. 565.

    Article  CAS  Google Scholar 

  38. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, p. 88.

    Article  CAS  Google Scholar 

  39. Ferheen, S., Aziz-ur-Rehman, Afza, N., et al., J. Enzym. Inhib. Med. Chem., 2009, vol. 24, p. 1128.

    Article  CAS  Google Scholar 

  40. Gorun, V., Proinov, I., Baltescu, V., et al., Anal. Biochem., 1978, vol. 86, p. 324.

    Article  CAS  Google Scholar 

  41. Hussain, S., Ali, S., Shahzadi, S., et al., Polyhedron, 2016, vol. 119, p. 483.

    Article  CAS  Google Scholar 

  42. Javed, F., Ali, S., Shahzadi, S., et al., J. Inorg. Organomet. Polym., 2016, vol. 26, p. 48.

    Article  CAS  Google Scholar 

  43. Hussain, S., Ali, S., Shahzadi, S., et al., J. Chin. Chem. Soc., 2015, vol. 62, p. 793.

    Article  CAS  Google Scholar 

  44. Hussain, S., Ali, S., Shahzadi, S., et al., J. Coord. Chem., 2015, vol. 68, p. 2369.

    Article  CAS  Google Scholar 

  45. Thirupataiah, C.H., Chary, D.P., Ravinder, M., and Srihari, S., Orient. J. Chem., 2008, vol. 24, p. 859.

    CAS  Google Scholar 

  46. Mounika, K., Pragathi, A., and Gyanakumari, C., J. Sci. Res., 2010, vol. 2, p. 513.

    CAS  Google Scholar 

  47. Aranha, E.P., Dos Santos, M.P., Romera, S., and Dockel, E.R., Polyhedron, 2007, vol. 26, p. 1373.

    Article  CAS  Google Scholar 

  48. Addison, A.W., Rao, N.T., Reedijk, J., et al., Dalton Trans., 1984, p. 1349.

    Google Scholar 

  49. Murphy, B. and Aljabri, M., Transition, Met. Chem., 2004, vol. 29, p. 394.

    Article  CAS  Google Scholar 

  50. Mao, J.G., Wang, Z., and Clearfield, A., Inorg. Chem., 2002, vol. 41, p. 3713.

    Article  CAS  Google Scholar 

  51. Kuckova, L., Jomova, K., Svorcova, A., et al., Molecules, 2015, vol. 20, p. 2115.

    Article  Google Scholar 

  52. Sun, J. and Xu, H., Molecules, 2010, vol. 15, p. 8349.

    Article  CAS  Google Scholar 

  53. Lopes, P.S., Paixao, D.A., de Paula, F.C.S., et al., J. Mol. Struct., 2013, vol. 1034, p. 84.

    Article  CAS  Google Scholar 

  54. Su, Z., Bai, Z.S., Xu, J., et al., CrystEngComm, 2009, vol. 11, p. 873.

    Article  CAS  Google Scholar 

  55. Karthikeyan, A., Thomas, P.T., and Perdih, F., Acta Crystallogr., Sect. C: Struct. Chem., 2016, vol. 72, p. 442.

    Article  CAS  Google Scholar 

  56. Marquesa, L.F., Marinho, M.V., Correa, C.C., et al., Inorg. Chim. Acta, 2011, vol. 368, p. 242.

    Article  Google Scholar 

  57. Ueyama, N., Yamada, Y., Takeda, J., et al., Chem. Commun., 1996, vol. 11, p. 1377.

    Article  Google Scholar 

  58. Logacheva, N.M., Baulin, V.E., Tsivadze, A.Y., et al., Dalton Trans., 2009, vol. 38, p. 2482.

    Article  Google Scholar 

  59. Biswas, C., Drew, M.G.B., Escudero, D., et al., Eur. J. Inorg. Chem., 2009, vol. 15, p. 2238.

    Article  Google Scholar 

  60. Borowska, J., Sierant, M., Sochacka, E., et al., J. Biol. Inorg. Chem., 2015, vol. 20, p. 989.

    Article  CAS  Google Scholar 

  61. Kuntz, I.D., Jr., Gasparro, F.P., Johnston, M.D., Jr., and Taylor, R.P., J. Am. Chem. Soc., 1968, vol. 90, p. 4778.

    Article  CAS  Google Scholar 

  62. Chikira, M., Hee-Ng, C., and Palaniandavar, M., Int. J. Mol. Sci., 2015, vol. 16, p. 22754.

    Article  CAS  Google Scholar 

  63. Moosun, S.B., Jhaumeer-Laulloo, S., Hosten, E.C., et al., Transition Met. Chem., 2015, vol. 40, p. 445.

    Article  CAS  Google Scholar 

  64. Yoshikawa, Y. and Yasui, H., Curr. Top. Med. Chem., 2012, vol. 12, p. 210.

    Article  CAS  Google Scholar 

  65. Sakurai, H., Katoh, A., Kiss, T., et al., Metallomics, 2010, vol. 10, p. 670.

    Article  Google Scholar 

  66. Qazzaz, M., Ghani, R.A., Metani, M., et al., Biol. Trace Elem. Res., 2013, vol. 154, p. 88.

    Article  CAS  Google Scholar 

  67. Tripathi, I.P., Mishra, K.M., Kamal, A., et al., Res. J. Chem. Sci., 2013, vol. 3, p. 54.

    CAS  Google Scholar 

  68. Miyazaki, R., Hiroyuki, Y., and Yoshikawa, Y., Open J. Inorg. Chem., 2016, vol. 6, p. 114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ali.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mushtaq, A., Ali, S., Iqbal, M. et al. Supramolecular Heteroleptic Copper(II) Carboxylates: Synthesis, Spectral Characterization, Crystal Structures, and Enzyme Inhibition Assay. Russ J Coord Chem 44, 187–197 (2018). https://doi.org/10.1134/S1070328418030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328418030053

Keywords

Navigation