Advertisement

Russian Journal of Coordination Chemistry

, Volume 43, Issue 12, pp 801–806 | Cite as

36-Nuclear anionic cobalt(II) and nickel(II) complexes in solid-phase insertion reactions

  • A. V. VologzhaninaEmail author
  • E. N. Zorina-Tikhonova
  • A. K. Matyukhina
  • A. A. Sidorov
  • P. V. Dorovatovskii
  • I. L. Eremenko
Article

Abstract

The reactions of single crystals containing 36-nuclear anionic complexes of cobalt(II), (NBu4)8[Co36(H2O-κO)123-OH)204-Me2Mal-κ2O,O′)244-Me2Mal)6] · 2.5H2O ∙ CH3OH (I), and nickel(II), (NBu4)8[Ni36(H2O-κO)123-OH)204-Me2Mal-κ2O,O′)244-Me2Mal)6] · 6H2O ∙ 2C2H5OH (II) and (NHEt3)3[Ni36(NHEt3)(H2O-κO)12.253-OH)204-HMe2Mal-κ2O,O′)44-Me2Mal-κ2O,O′)204-Me2Mal)6] · 39H2O (III), with solutions of 1,4-dioxane and a 0.1 M solution of Dabco (Dabco is 1,4-diazabicyclo[2.2.2]octane) in EtOH are studied. An ethanol solution of Dabco dissolves the crystals of the complexes, whereas the insertion of the solvent molecules with single crystal retention (for the cobalt compound containing tetrabutylammonium cation, I), cracking (for the nickel analog, II), or dissolution (for the cobalt complex containing triethylammonium, III) occurs in 1,4-dioxane. The X-ray diffraction analyses show the substitution of the uncoordinated water and ethanol molecules in the starting compound by 1,4-dioxane molecules in the structure of compound I to form (NBu4)8[Co36(H2O-κO)123-OH)204-Me2Mal-κ2O,O′)244-Me2Mal)6] · 7C4H8O2 (IV), which is accompanied by a change in the conformation and the shift of tetrabutylammonium cations, indicating a possibility of the modification of the 36-nuclear d-metal complexes with the malonic acid derivatives in the solid-phase resolvation reactions (CIF files CCDC no. 1557499 (III) and 1557500 (IV)).

Keywords

polynuclear d-metal complexes dimethyl malonates solid-phase reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carraro, M. and Gross, S., Materials, 2014, vol. 7, no. 5, p. 3956.CrossRefGoogle Scholar
  2. 2.
    Rezaeivala, M. and Keypour, H., Coord. Chem. Rev., 2014, vol. 280, p. 203.CrossRefGoogle Scholar
  3. 3.
    Fliedel, Ch., Ghisolfi, A., and Braunstein, P., Chem. Rev., 2016, vol. 116, no. 16, p. 9237.CrossRefGoogle Scholar
  4. 4.
    Ungur, L., Costes, J.-P., et al., Inorg. Chem., 2013, vol. 52, no. 11, p. 6328.CrossRefGoogle Scholar
  5. 5.
    Mukherjee, S. and Mukherjee, P.S., Acc. Chem. Res., 2013, vol. 46, no. 11, p. 2556.CrossRefGoogle Scholar
  6. 6.
    Masternak, J., Zienkiewicz-Machnik, M., Kowalik, M., et al., Coord. Chem. Rev., 2016, vol. 327–328, p. 242.CrossRefGoogle Scholar
  7. 7.
    Balzani, V., Juris, A., Venturi, M., et al., Chem. Rev., 1996, vol. 96, no. 2, p. 759.CrossRefGoogle Scholar
  8. 8.
    Schoedel, A. Zaworotko, M.J., et al., Chem. Sci., 2014, vol. 5, no. 4, p. 1269.CrossRefGoogle Scholar
  9. 9.
    Sapianik, A.A., Zorina-Tikhonova, E.N., Kiskin, M.A., et al., Inorg. Chem., 2017, vol. 56, no. 3, p. 1599.CrossRefGoogle Scholar
  10. 10.
    Korlyukov, A.A., Vologzhanina, A.V., Buzin, M.I., et al., Cryst. Growth Des., 2016, vol. 16, no. 4, p. 1968.CrossRefGoogle Scholar
  11. 11.
    Miras, H.N., Vila-Nadal, L., and Cronin, L., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 5679.CrossRefGoogle Scholar
  12. 12.
    Seth, S., Savitha, G., and Moorthy, J.N., J. Mater. Chem. A, 2015, vol. 3, no. 45, p. 22915.CrossRefGoogle Scholar
  13. 13.
    Ou, Sh. and Wu, Ch.-D., Inorg. Chem. Front., 2014, vol. 1, no. 10, p. 721.CrossRefGoogle Scholar
  14. 14.
    Manos, M.J. and Kanatzidis, M.G., Chem. Sci., 2016, vol. 7, no. 8, p. 4804.CrossRefGoogle Scholar
  15. 15.
    Noori, Y. and Akhbari, K., RSC Adv., 2017, vol. 7, no. 4, p. 1782.CrossRefGoogle Scholar
  16. 16.
    Lee, H.-H., Park, I.-H., Kim, S., et al., Chem. Sci., 2017, vol. 8, no. 4, p. 2592.CrossRefGoogle Scholar
  17. 17.
    Sapchenko, S.A., Samsonenko, D.G., Dybtsev, D.N., and Fedin, V.P., Inorg. Chem., 2013, vol. 52, no. 17, p. 9702.CrossRefGoogle Scholar
  18. 18.
    Kim, M., Cahill, J.F., Su, Y., et al., Chem. Sci., 2012, vol. 3, no. 1, p. 126.CrossRefGoogle Scholar
  19. 19.
    Kole, G.K. and Vittal, J.J., Chem. Soc. Rev., 2013, vol. 42, no. 4, p. 1755.CrossRefGoogle Scholar
  20. 20.
    Zhang, J.-P., Liao, P.-Q., Zhou, H.-L., et al., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 5789.CrossRefGoogle Scholar
  21. 21.
    Horike, S., Shimomura, S., and Kitagawa, S., Nature Chem., 2009, vol. 1, no. 9, p. 695.CrossRefGoogle Scholar
  22. 22.
    Zorina-Tikhonova, E.N., Gogoleva, N.V., Sidorov, A.A., et al., Polyhedron, 2017, vol. 130, p. 67.CrossRefGoogle Scholar
  23. 23.
    Zorina, E.N., Zauzolkova, N.V., Sidorov, A.A., et al., Inorg. Chim. Acta, 2013, vol. 396, p. 108.CrossRefGoogle Scholar
  24. 24.
    Zorina-Tikhonova, E.N., Gogoleva, N.V., Sidorov, A., et al., Russ. Chem. Bull. Int. Ed., 2015, vol. 64, p. 636.CrossRefGoogle Scholar
  25. 25.
    Winn, M.D., Ballard, C.C., Cowtan, K.D., et al., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, vol. 67, no. 4, p. 235.CrossRefGoogle Scholar
  26. 26.
    Sheldrick, G.M., SADABS. Program for Empirical X-ray Absorption Correction, Bruker-Nonius, 1990–2004.Google Scholar
  27. 27.
    Sheldrick, G.M., Acta Crystalogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.CrossRefGoogle Scholar
  28. 28.
    Sheldrick, G.M., Acta Crystalogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.Google Scholar
  29. 29.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.CrossRefGoogle Scholar
  30. 30.
    Spek, A.L., Acta Crystalogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 9.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Vologzhanina
    • 1
    Email author
  • E. N. Zorina-Tikhonova
    • 2
  • A. K. Matyukhina
    • 2
  • A. A. Sidorov
    • 2
  • P. V. Dorovatovskii
    • 3
  • I. L. Eremenko
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Kurchatov Institute Russian Research CenterMoscowRussia

Personalised recommendations