Switching of the exchange interaction character in the binuclear copper(II) complexes based on the hetaryl derivatives of 1,3-diaminopropanol-2
- 23 Downloads
Abstract
The binuclear copper(II) complex with bis-azomethine, viz., the product of condensation of 1,3-diaminopropanol-2 with 4-hydroxy-3-formylcoumarin (H3L), of the composition [Cu2L(μ2-CH3COO)] (I) is synthesized and studied. Complex I is characterized by the exchange interaction of the antiferromagnetic type (2J =–112 cm–1), which is switched to the ferromagnetic one (2J = +106 cm–1) after the recrystallization of the complex from dimethyl sulfoxide (DMSO) to form solvate [Cu2L(μ2-CH3COO)(μ2-DMSO)] · 0.5DMSO (II). The structure of solvate II is studied by X-ray diffraction analysis (CIF file CCDC no. 982198). The difference in the exchange character is explained by the stabilization by the μ2-coordinated DMSO molecule of a distorted (roof-shaped type) conformation of the polydentate ligand and the complex as a whole, unlike the symmetric conformation characteristic of the nonsolvated complex. The data obtained are compared with those on similar compounds synthesized earlier and with the quantum chemical modeling results for the exchange interaction in the framework of the DFT-BS approximation.
Keywords
coordination compounds binuclear complexes exchange interaction quantum chemical calculationPreview
Unable to display preview. Download preview PDF.
References
- 1.Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
- 2.Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. Chem. Bull., 2014, vol. 63, no. 3, p. 673.CrossRefGoogle Scholar
- 3.Wang, L.-L., Sun, Y.-M., Qi, Z.-N., and Liu, C.-B., J. Phys. Chem. A, 2008, vol. 112, no. 36, p. 8418.CrossRefGoogle Scholar
- 4.Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2008, vol. 252, nos. 18–20, p. 1871.CrossRefGoogle Scholar
- 5.Vigato, P.A., Peruzzo, V., and Tamburini, S., Coord. Chem. Rev., 2012, vol. 256, nos. 11–12, p. 953.CrossRefGoogle Scholar
- 6.Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 1, p. 1.CrossRefGoogle Scholar
- 7.Tupolova, Y., Popov, L., Levchenkov, S., et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 552.CrossRefGoogle Scholar
- 8.Lee, C.-J., Cheng, S.-C., Lin, H.-H., and Wei, H.-H., Inorg. Chem. Commun., 2005, vol. 8, no. 3, p. 235.CrossRefGoogle Scholar
- 9.Kawata, T., Ohba, S., Nishida, Y., and Tokii, T., Acta Crystallogr., Sect. C: Cryst. Struct. Comm., 1993, vol. 49, no. 12, p. 2070.CrossRefGoogle Scholar
- 10.Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.CrossRefGoogle Scholar
- 11.Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Y.P., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 28, p. 5033.Google Scholar
- 12.Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 8, p. 523.CrossRefGoogle Scholar
- 13.Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 69.CrossRefGoogle Scholar
- 14.Bleaney, B. and Bowers, K.D., Proc. R. Soc. London A, 1952, vol. 214, no. 1119, p. 451.CrossRefGoogle Scholar
- 15.Carlin, R.L., Magnetochemistry, Berlin Heidelberg: Springer and GmbH & Co. K, 1986.CrossRefGoogle Scholar
- 16.Kahn, O., Molecular Magnetism, New York: VCH, 1993.Google Scholar
- 17.SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison (WI, USA): Bruker AXS, Analytical X-ray Instruments, 1998.Google Scholar
- 18.Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen: Univ. of Göttingen, 1999.Google Scholar
- 19.Sheldrick, G., Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
- 20.Spek, A., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7.CrossRefGoogle Scholar
- 21.Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Methods Phys. Res., A, 2009, vol. 603, nos. 1–2, p. 95.CrossRefGoogle Scholar
- 22.Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I. Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Metod for Investigation of Amorphous Solids: EXAFS Spektroscopy) Novosibirsk: Nauka, 1988.Google Scholar
- 23.Newville, M., J. Synchrotron Radiat., 2001, vol. 8, no. 2, p. 322.CrossRefGoogle Scholar
- 24.Zabinsky, S.I., Rehr, J.J., Ankudinov, A., et al., Phys. Rev. B, 1995, vol. 52, no. 4, p. 2995.CrossRefGoogle Scholar
- 25.Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, no. 2, p. 177.CrossRefGoogle Scholar
- 26.Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03. Revision E.1, 2003.Google Scholar
- 27.Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
- 28.Malrieu, J.P., Caballol, R., Calzado, C.J., et al., Chem. Rev., 2013, vol. 114, no. 1, p. 429.CrossRefGoogle Scholar
- 29.Comba, P. and Kerscher, M., Coord. Chem. Rev., 2009, vol. 253, nos. 5–6, p. 564.CrossRefGoogle Scholar
- 30.Ruiz, E., Exchange Coupling in Di-and Polynuclear Complexes, Comprehensive Inorganic Chemistry II, 2nd ed., 2013, vol. 9, p. 501.Google Scholar
- 31.Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Inorg. Chim. Acta, 2013, vol. 405, p. 169.CrossRefGoogle Scholar
- 32.Yamaguchi, K., Takahara, Y., Fueno, T., and Houk, K.N., Theor. Chim. Acta, 1988, vol. 73, no. 5, p. 337.CrossRefGoogle Scholar
- 33.Nishida, Y. and Kida, S., Inorg. Chem., 1988, vol. 27, no. 3, p. 447.CrossRefGoogle Scholar
- 34.Elmali, A., Zeyrek, C.T., and Elerman, Y., J. Mol. Struct., 2004, vol. 693, nos. 1–3, p. 225.CrossRefGoogle Scholar
- 35.Kogan V.A., Lukov V.V., Novotortsev V.M., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2005, vol. 4, no. 3, p. 592.Google Scholar