Russian Journal of Coordination Chemistry

, Volume 43, Issue 11, pp 727–735 | Cite as

Switching of the exchange interaction character in the binuclear copper(II) complexes based on the hetaryl derivatives of 1,3-diaminopropanol-2

  • I. N. Shcherbakov
  • L. D. Popov
  • S. I. Levchenkov
  • V. G. Vlasenko
  • G. G. Aleksandrov
  • Yu. P. Tupolova
  • V. V. Lukov
Article

Abstract

The binuclear copper(II) complex with bis-azomethine, viz., the product of condensation of 1,3-diaminopropanol-2 with 4-hydroxy-3-formylcoumarin (H3L), of the composition [Cu2L(μ2-CH3COO)] (I) is synthesized and studied. Complex I is characterized by the exchange interaction of the antiferromagnetic type (2J =–112 cm–1), which is switched to the ferromagnetic one (2J = +106 cm–1) after the recrystallization of the complex from dimethyl sulfoxide (DMSO) to form solvate [Cu2L(μ2-CH3COO)(μ2-DMSO)] · 0.5DMSO (II). The structure of solvate II is studied by X-ray diffraction analysis (CIF file CCDC no. 982198). The difference in the exchange character is explained by the stabilization by the μ2-coordinated DMSO molecule of a distorted (roof-shaped type) conformation of the polydentate ligand and the complex as a whole, unlike the symmetric conformation characteristic of the nonsolvated complex. The data obtained are compared with those on similar compounds synthesized earlier and with the quantum chemical modeling results for the exchange interaction in the framework of the DFT-BS approximation.

Keywords

coordination compounds binuclear complexes exchange interaction quantum chemical calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401.CrossRefGoogle Scholar
  2. 2.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. Chem. Bull., 2014, vol. 63, no. 3, p. 673.CrossRefGoogle Scholar
  3. 3.
    Wang, L.-L., Sun, Y.-M., Qi, Z.-N., and Liu, C.-B., J. Phys. Chem. A, 2008, vol. 112, no. 36, p. 8418.CrossRefGoogle Scholar
  4. 4.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2008, vol. 252, nos. 18–20, p. 1871.CrossRefGoogle Scholar
  5. 5.
    Vigato, P.A., Peruzzo, V., and Tamburini, S., Coord. Chem. Rev., 2012, vol. 256, nos. 11–12, p. 953.CrossRefGoogle Scholar
  6. 6.
    Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 1, p. 1.CrossRefGoogle Scholar
  7. 7.
    Tupolova, Y., Popov, L., Levchenkov, S., et al., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 552.CrossRefGoogle Scholar
  8. 8.
    Lee, C.-J., Cheng, S.-C., Lin, H.-H., and Wei, H.-H., Inorg. Chem. Commun., 2005, vol. 8, no. 3, p. 235.CrossRefGoogle Scholar
  9. 9.
    Kawata, T., Ohba, S., Nishida, Y., and Tokii, T., Acta Crystallogr., Sect. C: Cryst. Struct. Comm., 1993, vol. 49, no. 12, p. 2070.CrossRefGoogle Scholar
  10. 10.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., et al., Inorg. Chem. Commun., 2012, vol. 17, p. 1.CrossRefGoogle Scholar
  11. 11.
    Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Y.P., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 28, p. 5033.Google Scholar
  12. 12.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Russ. J. Coord. Chem., 2014, vol. 40, no. 8, p. 523.CrossRefGoogle Scholar
  13. 13.
    Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., et al., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 69.CrossRefGoogle Scholar
  14. 14.
    Bleaney, B. and Bowers, K.D., Proc. R. Soc. London A, 1952, vol. 214, no. 1119, p. 451.CrossRefGoogle Scholar
  15. 15.
    Carlin, R.L., Magnetochemistry, Berlin Heidelberg: Springer and GmbH & Co. K, 1986.CrossRefGoogle Scholar
  16. 16.
    Kahn, O., Molecular Magnetism, New York: VCH, 1993.Google Scholar
  17. 17.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison (WI, USA): Bruker AXS, Analytical X-ray Instruments, 1998.Google Scholar
  18. 18.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen: Univ. of Göttingen, 1999.Google Scholar
  19. 19.
    Sheldrick, G., Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  20. 20.
    Spek, A., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7.CrossRefGoogle Scholar
  21. 21.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Methods Phys. Res., A, 2009, vol. 603, nos. 1–2, p. 95.CrossRefGoogle Scholar
  22. 22.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I. Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-ray Spectral Metod for Investigation of Amorphous Solids: EXAFS Spektroscopy) Novosibirsk: Nauka, 1988.Google Scholar
  23. 23.
    Newville, M., J. Synchrotron Radiat., 2001, vol. 8, no. 2, p. 322.CrossRefGoogle Scholar
  24. 24.
    Zabinsky, S.I., Rehr, J.J., Ankudinov, A., et al., Phys. Rev. B, 1995, vol. 52, no. 4, p. 2995.CrossRefGoogle Scholar
  25. 25.
    Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, no. 2, p. 177.CrossRefGoogle Scholar
  26. 26.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03. Revision E.1, 2003.Google Scholar
  27. 27.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  28. 28.
    Malrieu, J.P., Caballol, R., Calzado, C.J., et al., Chem. Rev., 2013, vol. 114, no. 1, p. 429.CrossRefGoogle Scholar
  29. 29.
    Comba, P. and Kerscher, M., Coord. Chem. Rev., 2009, vol. 253, nos. 5–6, p. 564.CrossRefGoogle Scholar
  30. 30.
    Ruiz, E., Exchange Coupling in Di-and Polynuclear Complexes, Comprehensive Inorganic Chemistry II, 2nd ed., 2013, vol. 9, p. 501.Google Scholar
  31. 31.
    Levchenkov, S.I., Shcherbakov, I.N., Popov, L.D., et al., Inorg. Chim. Acta, 2013, vol. 405, p. 169.CrossRefGoogle Scholar
  32. 32.
    Yamaguchi, K., Takahara, Y., Fueno, T., and Houk, K.N., Theor. Chim. Acta, 1988, vol. 73, no. 5, p. 337.CrossRefGoogle Scholar
  33. 33.
    Nishida, Y. and Kida, S., Inorg. Chem., 1988, vol. 27, no. 3, p. 447.CrossRefGoogle Scholar
  34. 34.
    Elmali, A., Zeyrek, C.T., and Elerman, Y., J. Mol. Struct., 2004, vol. 693, nos. 1–3, p. 225.CrossRefGoogle Scholar
  35. 35.
    Kogan V.A., Lukov V.V., Novotortsev V.M., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2005, vol. 4, no. 3, p. 592.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. N. Shcherbakov
    • 1
  • L. D. Popov
    • 1
  • S. I. Levchenkov
    • 1
    • 2
  • V. G. Vlasenko
    • 3
  • G. G. Aleksandrov
    • 4
  • Yu. P. Tupolova
    • 1
  • V. V. Lukov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations