Russian Journal of Coordination Chemistry

, Volume 43, Issue 11, pp 753–764 | Cite as

Copper, cobalt, and nickel complexes of azomethine compounds containing phenylazo group in the amine fragment: Syntheses, structures, and magnetic properties

  • A. S. BurlovEmail author
  • V. G. Vlasenko
  • S. I. Levchenkov
  • E. V. Korshunova
  • S. A. Mashchenko
  • Ya. V. Zubavichus
  • A. L. Trigub
  • T. V. Lifintseva


The Cu, Ni, and Со complexes based on the following new azomethine compounds containing azobenzene groups in the ortho- or para-positions of the amine fragment are synthesized: 2-allyl-6-[(E)-[4-(E)-phenylazophenyl]iminomethyl]phenol (HL1), 2-allyl-6-[(E)-[4-methyl-2-[(E)-phenylazo]-p-tolylazo] iminomethyl]phenol (HL2), 5-methoxy-2-[(E)-[4-[(E)-phenylazo]phenyl]iminoethyl]phenol (HL3), and 5-methoxy-2-[(E)-[4-methyl-2-[(E)-p-tolylazo]phenyl]iminomethyl]phenol (HL4). The structures of the complexes are determined by the data of IR and 1Н NMR spectroscopy (for the azomethine compounds), X-ray absorption spectroscopy, and magnetochemistry. The coordination centers of all Cu complexes have a distorted square structure. A direct dependence of the geometry of the coordination polyhedron on the position of azobenzene groups in the amine fragments of the ligands is found for the Ni and Co complexes. The octahedral environment of the nickel and cobalt ions takes place in the case of the ortho-position of the amine fragment, whereas the square environment for the Ni complexes or the tetrahedral environment for the Co complexes is observed at the para-position. The molecular structures of two azomethines HL1 and HL4 are determined by X-ray diffraction analysis (CIF files CCDC nos. 1552836 (HL1) and 1552837 (HL4)).


azomethines metal complexes X-ray absorption spectroscopy X-ray diffraction analysis magnetochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nejati, K., Rezvani, Z., and Massoumi, B., Dyes Pigments, 2007, vol. 75, no. 3, p. 653.CrossRefGoogle Scholar
  2. 2.
    Hernandez-Molina, R. and Mederos, A., in Comprehensive Coordination Chemistry II, Lever, A.B.P, Ed., Amsterdam-Oxford-New York: Elsevier-Pergamon, 2003, vol. 2, p. 411.CrossRefGoogle Scholar
  3. 3.
    Vigato, P.A., Tamburini, S., and Bertelo, L., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1311.CrossRefGoogle Scholar
  4. 4.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 17–20, p. 1717.CrossRefGoogle Scholar
  5. 5.
    Morkovnik, A.S., Divaeva, L.N., Uraev, A.I., et al., Izv. Akad. Nauk, Ser. Khim., 2008, no. 7, p. 1467.Google Scholar
  6. 6.
    Burlov, A.S., Uraev, A.I., Matuev, P.V., et al., Russ. J. Coord. Chem., 2008, vol. 34, no. 12, p. 904.CrossRefGoogle Scholar
  7. 7.
    Burlov, A.S., Antsyshkina, A.S., Sadikov, G.G., et al., Russ. J. Coord. Chem., 2000, vol. 26, no. 9, p. 648.Google Scholar
  8. 8.
    USSR Inventor’s Certificate no. 682521, Byull. Izobret., 1982, no.45.Google Scholar
  9. 9.
    USSR Inventor’s Certificate no. 979349, Byull. Izobret., 1982, no.45.Google Scholar
  10. 10.
    Chigarenko, G.G., Ponomarenko, A.G., and Burlov, A.S., Trenie Iznos., 2007, vol. 28, no. 4, p. 397.Google Scholar
  11. 11.
    Garnovskii, A.D., Alekseenko, V.A., Burlov, A.S., and Nedzvetskii, V.S., Zh. Neorg. Khim., 1991, vol. 36, no. 4, p. 886.Google Scholar
  12. 12.
    Garnovskii, A.D., Burlov, A.S., Antsyshkina, A.S., and Divaeva, L.N., Russ. J. Inorg. Chem., 1996, vol. 41, no. 1, p. 85.Google Scholar
  13. 13.
    Kogan, V.A. and Shcherbakov, I.N., Ros. Khim. Zh., 2004, vol. 48, no. 1, p. 69.Google Scholar
  14. 14.
    Garnovskii, A.D. and Vasil’chenko, I.S., Usp. Khim., 2005, vol. 74, no. 3, p. 211.CrossRefGoogle Scholar
  15. 15.
    Garnovskii, A.D., Vasilchenko, I.S., Garnovskii, D.A., et al., J. Coord. Chem., 2009, vol. 62, no. 2, p. 151.CrossRefGoogle Scholar
  16. 16.
    Naeimi, H., Safari, J., and Heidarnezhad, A., Dyes Pigments, 2007, vol. 73, no. 2, p. 251.CrossRefGoogle Scholar
  17. 17.
    Ispir, E., Dyes Pigments, 2009, vol. 82, no. 1, p. 13.CrossRefGoogle Scholar
  18. 18.
    Lippard, S.J. and Berg, J.M., Principles of Bioinorganic Chemistry, Mill Valley: Univ. Science Books, 1994.Google Scholar
  19. 19.
    Aiello, I., Ghedini, M., Neve, F., and Pucci, D., Chem. Mater., 1997, vol. 9, no. 10, p. 2107.CrossRefGoogle Scholar
  20. 20.
    Rezvani, Z., Ghanea, M.A., Nejati, K., and Baghaei, S.A., Polyhedron, 2009, vol. 28, no. 14, p. 2913.CrossRefGoogle Scholar
  21. 21.
    Li, L., Hua, X., Huang, Y., et al., Synth. React. Inorg. Met. Org. Chem., 2014, vol. 44, p. 291.CrossRefGoogle Scholar
  22. 22.
    Halcrow, M.A., Comprehensive Coordination Chemistry II, Que, L. and Tolman, W.B., Eds., NewYork: Elsevier-Pergamon, 2003, vol. 8, p. 395.CrossRefGoogle Scholar
  23. 23.
    Gütlich, P., Garcia, Y., and Woike, T., Coord. Chem. Rev., 2001, vols. 219-221, p. 839.CrossRefGoogle Scholar
  24. 24.
    Burlov, A.S., Nikolaevskii, S.A., Bogomyakov, A.S., et al., Rus. J. Coord. Chem., 2009, vol. 35, no. 7, p. 486.CrossRefGoogle Scholar
  25. 25.
    Garnovskii, A.D., Burlov, A.S., Starikov, A.G., et al., Rus. J. Coord. Chem., 2010, vol. 36, no. 7, p. 483.CrossRefGoogle Scholar
  26. 26.
    Wang, P., Ming, H., Zhang, J.Y., et al., Opt. Commun., 2002, vol. 203, p. 159.CrossRefGoogle Scholar
  27. 27.
    Burlov, A.S., Mashchenko, S.A., Antsyshkina, A.S., et al., Rus. J. Coord. Chem., 2013, vol. 39, no. 12, p. 707.CrossRefGoogle Scholar
  28. 28.
    Burlov, A.S., Mashchenko, S.A., Vlasenko, V.G., et al., Rus. J. Coord. Chem., 2015, vol. 41, no. 6, p. 346.CrossRefGoogle Scholar
  29. 29.
    Burlov, A.S., Mashchenko, S.A., Vlasenko, V.G., et al., J. Mol. Struct., 2014, vol. 1061, p. 47.CrossRefGoogle Scholar
  30. 30.
    Munire, S., Pervin, D., Muhammet, K., et al., J. Mol. Struct., 2015, vol. 1096, p. 64.CrossRefGoogle Scholar
  31. 31.
    Raziyeh, A.A. and Saeid, A., Molecules, 2012, vol. 17, p. 6434.CrossRefGoogle Scholar
  32. 32.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instr. Meth. Phys. Res. A, 2009, vol. 603, p. 95.CrossRefGoogle Scholar
  33. 33.
    Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96.CrossRefGoogle Scholar
  34. 34.
    Zabinsky, S.I., Rehr, J.J., Ankudinov, A., et al., Phys. Rev. B, 1995, vol. 52, p. 2995.CrossRefGoogle Scholar
  35. 35.
    CrysAlisPro. Agilent Technologies. Version Scholar
  36. 36.
    Sheldrick, G.M., Program for the Refinement of Crystal Structure, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  37. 37.
    Allen, F.H., Kennard, O., Watson, D.G., et al., J. Chem. Soc., Perkin Trans., 1987, no. 12, p. S1.CrossRefGoogle Scholar
  38. 38.
    Kogan, V.A., Osipov, O.A., Minkin, V.I., and Sokolov, V.P., Zh. Neorg. Khim., 1965, vol. 10, no. 1, p. 83.Google Scholar
  39. 39.
    Garnovskii, A.D., Ponomarenko, A.G., Burlov, A.S., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 5, p. 982.CrossRefGoogle Scholar
  40. 40.
    Garnovskii, A.D., Burlov, A.S., Lysenko, K.A., et al., Rus. J. Coord. Chem., 2009, vol. 35, no. 2, p. 122.CrossRefGoogle Scholar
  41. 41.
    Pattanayak, P., Pratihar, J.L., Patra, D., et al., Eur. J. Inorg. Chem., 2007, p. 4263.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Burlov
    • 1
    Email author
  • V. G. Vlasenko
    • 2
  • S. I. Levchenkov
    • 3
  • E. V. Korshunova
    • 1
  • S. A. Mashchenko
    • 1
  • Ya. V. Zubavichus
    • 4
  • A. L. Trigub
    • 4
  • T. V. Lifintseva
    • 5
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  4. 4.National Research Center “Kurchatov Institute”MoscowRussia
  5. 5.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations