Advertisement

Russian Journal of Coordination Chemistry

, Volume 43, Issue 10, pp 693–699 | Cite as

Synthesis, Characterization, Crystal Structures, and Antibacterial Activity of Polynuclear Nickel(II) and Copper(II) Complexes with Similar Tridentate Schiff Bases

  • W. H. Sun
  • K. H. Li
  • H. Liu
  • Y. T. Gu
  • Y. Zhang
  • Z. L. You
  • W. LiEmail author
Article

Abstract

An end-on azido-bridged dinuclear nickel(II) complex [Ni2(L1)21,1-N3)2] · CH3COOH (I) and an end-on azido-bridged polynuclear copper(II) complex [CuL21,1-N3)] n , where L1 is the deprotonated form of 2-[(2-ethylaminoethylimino)methyl]-4-fluorophenol and L2 is the deprotonated form of 2-[(2- dimethylaminoethylimino)methyl]-4-fluorophenol, were prepared and characterized by elemental analysis and FT-IR spectra. Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method (CIF files CCDC nos. 942641 (I) and 942642 (II)). Single crystal X-ray structural studies indicate that the Schiff base ligands coordinate to the metal atoms through phenolate oxygen, imine nitrogen, and amine nitrogen. The Ni atoms in the nickel complex are in octahedral coordination, and the Cu atoms in the copper complex are in square pyramidal coordination. Crystals of the complexes are stabilized by hydrogen bonds. The Schiff bases and the complexes showed potent antibacterial activities.

Keywords

ckel complex copper complex Schiff base crystal structure hydrogen bonding antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katsaros, N., Katsarou, M., Sovilj, S.P., et al., Bioinorg. Chem. Appl., 2004, vol. 2, nos. 3–4, p. 193.CrossRefGoogle Scholar
  2. 2.
    Karaliota, A., Kamariotaki, M., Hadjipanajioti, D., et al., J. Inorg. Biochem., 1998, vol. 69, nos. 1–2, p. 79.CrossRefGoogle Scholar
  3. 3.
    Liimatainen, J., Lehtonen, A., and Sillanpaa, R., Polyhedron, 2000, vol. 19, no. 9, p. 1133.CrossRefGoogle Scholar
  4. 4.
    Rao, S.N., Munshi, K.N., Rao, N.N., et al., Polyhedron, 1999, vol. 18, no. 19, p. 2491.CrossRefGoogle Scholar
  5. 5.
    Dinda, R., Ghosh, S., Falvello, L.R., et al., Polyhedron, 2006, vol. 25, no. 12, p. 2375.CrossRefGoogle Scholar
  6. 6.
    Bagherzadeh, M., Amini, M., Parastar, H., et al., Inorg. Chem. Commun., 2012, vol. 20, no. 1, p. 86.CrossRefGoogle Scholar
  7. 7.
    Dinda, R., Sengupta, P., Ghosh, S., et al., Dalton Trans., 2002, vol. 23, no. 23, p. 4434.CrossRefGoogle Scholar
  8. 8.
    Liu, D., Zhou, Q., Chen, Y., et al., Dalton Trans., 2010, vol. 39, no. 23, p. 5504.CrossRefGoogle Scholar
  9. 9.
    Tian, C.-B., Li, Z.-H., Lin, J.-D., et al., Eur. J. Inorg. Chem., 2010, no. 3, p. 427.CrossRefGoogle Scholar
  10. 10.
    Zhou, X.-S., You, Z.-L., Xian, D.-M., et al., Chin. J. Inorg. Chem., 2013, vol. 29, no. 4, p. 850.Google Scholar
  11. 11.
    Zhang, M., Xian, D.-M., Li, H.-H., et al., Aust. J. Chem., 2012, vol. 65, no. 4, p. 343.Google Scholar
  12. 12.
    SMART and SAINT, Madison: Bruker AXS Inc., 2002.Google Scholar
  13. 13.
    Sheldrick, G.M., SADABS, Program for Empirical Absorption Correction of Area Detector, Göttingen: Univ. of Göttingen, 1996.Google Scholar
  14. 14.
    Sheldrick, G.M., SHELXTL V5.1, Software Reference Manual, Madison: Bruker AXS, Inc., 1997.Google Scholar
  15. 15.
    Sasmal, S., Hazra, S., Kundu, P., et al., Inorg. Chem., 2010, vol. 49, no. 20, p. 9517.CrossRefGoogle Scholar
  16. 16.
    Zhou, X.-S., Cheng, X.-S., Li, Y.-N., et al., Chin. J. Inorg. Chem., 2013, vol. 29, no. 2, p. 397.Google Scholar
  17. 17.
    Qian, S.-S., Zhang, M., Cheng, X.-S., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2013, vol. 43, no. 8, p. 1059.CrossRefGoogle Scholar
  18. 18.
    Bhowmik, P., Jana, S., and Chattopadhyay, S., Polyhedron, 2012, vol. 44, no. 1, p. 11.CrossRefGoogle Scholar
  19. 19.
    Zhang, M., Xian, D.-M., Zhang, N., et al., Struct. Chem., 2012, vol. 23, no. 5, p. 1489.CrossRefGoogle Scholar
  20. 20.
    You, Z.-L. and Jiao, Q.-Z., Synth. React. Inorg. Met.- Org. Nano-Met. Chem., 2006, vol. 36, no. 10, p. 713.CrossRefGoogle Scholar
  21. 21.
    Xue, L.-W., Zhao, G.-Q., Han, Y.-J., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2011, vol. 41, no. 2, p. 141.Google Scholar
  22. 22.
    Searl, J.W., Smith, R.C., and Wyard, S., J. Proc. Phys. Soc., 1961, vol. 78, no. 505, p. 1174.CrossRefGoogle Scholar
  23. 23.
    Rosu, T., Negoiu, M., Pasculescu, S., et al., Eur. J. Med. Chem., 2010, vol. 45, no. 2, p. 774.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • W. H. Sun
    • 1
  • K. H. Li
    • 1
  • H. Liu
    • 2
  • Y. T. Gu
    • 2
  • Y. Zhang
    • 2
  • Z. L. You
    • 2
  • W. Li
    • 1
    • 3
    Email author
  1. 1.Department of RadiologyThe Second Hospital of Dalian Medical UniversityDalianP.R. China
  2. 2.Department of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianP.R. China
  3. 3.Department of Hepatobiliary and Pancreatic SurgeryThe Second Hospital of Dalian Medical UniversityDalianP.R. China

Personalised recommendations