Russian Journal of Coordination Chemistry

, Volume 43, Issue 5, pp 314–319 | Cite as

Synthesis, X-ray crystal structures, and antibacterial activities of Schiff base nickel(II) complexes with similar tetradentate Schiff bases

Article
  • 47 Downloads

Abstract

Two new mononuclear complexes, [NiL1] · CH3OH (I) and [NiL2] (II), have been prepared from the tetradentate Schiff bases N,N'-bis(5-methylsalicylidene)ethylenediamine (H2L1) and N,N'-bis(5-methylsalicylidene)- o-phenylenediamine (H2L2), respectively. The complexes have been characterized by physico-chemical and spectroscopic methods, as well as single-crystal X-ray determination (CIF files nos. 1428969 (I), 1428968 (II)). Complex I crystallizes in the triclinic space group P1 with a = 6.7387(14), b = 10.7010(17), c = 12.681(2) Å, α = 87.059(2)°, β = 88.828(2)°, γ = 89.901(2)°, V = 913.0(3) Å3, Z = 2. Complex II crystallizes in the monoclinic space group P21/n with a = 12.1437(11), b = 8.0537(8), c = 18.4545(18) Å, β = 105.088(2)°, V = 1742.7(3) Å3, Z = 4. The nickel atoms in the complexes are coordinated by two phenolate O and two imine N atoms of the tetradentate Schiff base ligands, forming square planar coordination. The complexes and the Schiff base compounds were assayed for antibacterial activities against three Gram-positive bacterial strains (B. subtilis, S. aureus, and St. faecalis) and three Gram-negative bacterial strains (E. coli, P. aeruginosa, and E. cloacae) by MTT method. As a result, the complexes showed effective antimicrobial activity against the microorganisms tested.

Keywords

Schiff base nickel complex X-ray diffraction antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, J.-C., Li, Y.-N., Huang, D., et al., Chin. J. Inorg. Chem., 2014, vol. 30, no. 2, p. 425.Google Scholar
  2. 2.
    Niu, F., Yan, K.-X., Pang, L.H., et al., Inorg. Chim. Acta, 2015, vol. 435, p. 299.CrossRefGoogle Scholar
  3. 3.
    Mohamed, R.G., Elantabli, F.M., Helal, N.H., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, vol. 45, no. 12, p. 1839.CrossRefGoogle Scholar
  4. 4.
    Matin, S.J. and Khojasteh, R.R., Russ. J. Coord. Chem., 2015, vol. 85, no. 7, p. 1763.CrossRefGoogle Scholar
  5. 5.
    Li, W., Ding, B.-W., Sun, H., et al., Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, vol. 42, no. 5, p. 666.Google Scholar
  6. 6.
    Hazari, P.P., Pandey, A.K., Chaturvedi, S., et al., Chem. Biol. Drug Des., 2012, vol. 79, no. 2, p. 223.CrossRefGoogle Scholar
  7. 7.
    Ramadan, R.M., Abu Al-Nasr, A.K., and Noureldeen, A.F.H., Spectrochim. Acta, A, 2014, vol. 132, p. 417.CrossRefGoogle Scholar
  8. 8.
    Khoo, T.-J., Bin Break, M.K., Crouse, K.A., et al., Inorg. Chim. Acta, 2014, vol. 413, p. 68.CrossRefGoogle Scholar
  9. 9.
    Mukherjee, T., Pessoa, J.C., Kumar, A., et al., Dalton Trans., 2013, vol. 42, no. 7, p. 2594.CrossRefGoogle Scholar
  10. 10.
    Maurya, R.C., Malik, B.A., Mir, J.M., et al., J. Coord. Chem., 2015, vol. 68, no. 16, p. 2902.CrossRefGoogle Scholar
  11. 11.
    Lu, Y., Shi, D.-H., You, Z.-L., et al., J. Coord. Chem., 2012, vol. 65, no. 2, p. 339.CrossRefGoogle Scholar
  12. 12.
    Zhou, X.-S., Cheng, X.-S., Li, Y.-N., et al., Chin. J. Inorg. Chem., 2013, vol. 29, no. 2, p. 397.Google Scholar
  13. 13.
    Sheldrick, G.M., SAINT (version 6.02), SADABS (version 2.03), Madison: Bruker AXS lnc., 2002.Google Scholar
  14. 14.
    Sheldrick, G.M., SHELXL-97, Program for Crystal Structure Solution, Göttingen: Univ. of Göttingen, 1997.Google Scholar
  15. 15.
    Meletiadis, J., Meis, J.F., Mouton, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, no. 8, p. 2949.Google Scholar
  16. 16.
    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, no. 1, p. 81.CrossRefGoogle Scholar
  17. 17.
    Lal, R.A., Choudhury, S., Ahmed, A., et al., J. Coord. Chem., 2009, vol. 62, no. 23, p. 3864.CrossRefGoogle Scholar
  18. 18.
    Surati, K. and Thaker, B.T., Spectrochim. Acta, A, 2010, vol. 75, no. 1, p. 235.CrossRefGoogle Scholar
  19. 19.
    Jana, A., Majumder, S., Carrella, L., et al., Inorg. Chem., 2010, vol. 49, no. 19, p. 9012.CrossRefGoogle Scholar
  20. 20.
    Rusere, L.N., Shalumova, T., Tanski, J.M., et al., Polyhedron, 2009, vol. 28, no. 17, p. 3804.CrossRefGoogle Scholar
  21. 21.
    Prabhakar, M., Zacharias, P.S., and Das, S.K., Inorg. Chem. Commun., 2006, vol. 9, no. 9, p. 899.CrossRefGoogle Scholar
  22. 22.
    Abe, Y., Akao, H., Yoshida, Y., et al., Inorg. Chim. Acta, 2006, vol. 359, no. 10, p. 3147.CrossRefGoogle Scholar
  23. 23.
    Taherlo, R. and Salehi, M., Inorg. Chim. Acta, 2014, vol. 418, p. 180.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Modern Medical Research CenterThird Affiliated Hospital of Soochow UniversityChangzhouP.R. China
  2. 2.Department of Respiratory MedicineThird Affiliated Hospital of Soochow UniversityChangzhouP.R. China

Personalised recommendations