Russian Journal of Coordination Chemistry

, Volume 43, Issue 5, pp 286–296 | Cite as

Principles of supramolecular polymeric chain formation in heteronuclear gold(III)–iron(III) complexes ([Au(S2CNR2)2][FeCl4]) n (R = C3H7, iso-C3H7): Chemisorption synthesis, structural organization, and thermal behavior

  • O. V. Loseva
  • T. A. Rodina
  • A. V. Gerasimenko
  • A. V. Ivanov
Article
  • 26 Downloads

Abstract

Polymeric gold(III)–iron(III) dithiocarbamate–chloride complexes of the ionic type are synthesized by the chemisorption binding of gold(III) with freshly precipitated iron(III) dipropyl and di-iso-propyl dithiocarbamates from solutions of H[AuCl4] in 2 M HCl. Heteropolynuclear complexes of the compositions ([Au{S2CN(C3H7)2}2][FeCl4])n (I) and ([Au{S2CN(iso-C3H7)2}2][FeCl4])n (II) are preparatively isolated as individual forms of gold(III) binding. The structural organization of the complexes is established by X-ray diffraction analysis (CIF files CCDC no. 1480802 (I) and no. 1480806 (II)). The structures of compounds I and II are characterized at the supramolecular level by the presence of two types of polymeric chains, the methods of formation of which differ substantially. Compound I contains the following structural units: four structurally nonequivalent centrosymmetric complex cations [Au{S2CN(C3H7)2}2]+ (A, B, С, and D) and two complex anions [FeCl4] related to each other as conformers. Two independent cation-cationic linear polymeric chains (···А···В···)n and (···С···D···)n are formed in the structure of complex I due to pair relatively weak secondary interactions Au···S (nonvalent type) between the adjacent complex cations. The structure of compound II is characterized by zigzag cation-anionic chains (···[Au{S2CN(iso-C3H7)2}2]+···[FeCl4]···)n in the formation of which the secondary interactions Au···Cl play the determining role. The thermal behavior of complexes I and II is studied by simultaneous thermal analysis. The thermal destruction process includes the thermolysis of the dithiocarbamate moiety of the complexes and [FeCl4] with the reduction of gold(III) to the metal, the liberation of FeCl3, and the partial transformation of the latter into Fe2O3. In both cases, the final products of the thermal transformations of the studied compounds are elemental gold and Fe2O3.

Keywords

heteronuclear gold(III)–iron(III) dithiocarbamate–chloride complexes chemisorption synthesis supramolecular structures structural self-organization secondary bonds thermal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coucouvanis, D., Prog. Inorg. Chem., 1979, vol. 26, p. 301.Google Scholar
  2. 2.
    Golding, R.M., Tennant, W.C., Kanekar, C.R., et al., J. Chem. Phys., 1966, vol. 45, no. 7, p. 2688.CrossRefGoogle Scholar
  3. 3.
    Eley, R.R., Duffy, N.V., and Uhrich, D.L., J. Inorg. Nucl. Chem., 1972, vol. 34, no. 12, p. 3681.CrossRefGoogle Scholar
  4. 4.
    Chapps, G.E., McCann, S.W., Wickman, H.H., and Sherwood, R.C., J. Chem. Phys., 1974, vol. 60, no. 3, p. 990.CrossRefGoogle Scholar
  5. 5.
    Law, N.A., Dietzsch, W., and Duffy, N.V., Polyhedron, 2003, vol. 22, no. 27, p. 3423.CrossRefGoogle Scholar
  6. 6.
    Grekova, A.V., Ivanchenko, P.A., and Seifullina, I.I., Vopr. Khim. Khim. Tekhnol., 2012, no. 1, p. 42.Google Scholar
  7. 7.
    Yoshimura, T. and Kotake, A., Antioxid. Redox Signal., 2004, vol. 6, no. 3, p. 639.CrossRefGoogle Scholar
  8. 8.
    Vanin, A.F., Bevers, L.M., Mikoyan, V.D., et al., Nitric Oxide, 2007, vol. 16, no. 1, p. 71.CrossRefGoogle Scholar
  9. 9.
    Vanin, A.F., Poltorakov, A.P., Mikoyan, V.D., et al., Nitric Oxide, 2006, vol. 15, no. 4, p. 295.CrossRefGoogle Scholar
  10. 10.
    Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.CrossRefGoogle Scholar
  11. 11.
    Ivanov, A.V., Rodina, T.A., and Loseva, O.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 12, p. 875.CrossRefGoogle Scholar
  12. 12.
    Loseva, O.V. and Ivanov, A.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, p. 491.CrossRefGoogle Scholar
  13. 13.
    Loseva, O.V., Rodina, T.A., and Ivanov, A.V., Russ. J. Coord. Chem., 2013, vol. 39, no. 6, p. 463.CrossRefGoogle Scholar
  14. 14.
    Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem., 2014, vol. 55, no. 5, p. 901.CrossRefGoogle Scholar
  15. 15.
    Ivanov, A.V., Sergienko, V.I., Gerasimenko, A.V., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 5, p. 353.CrossRefGoogle Scholar
  16. 16.
    Rodina, T.A., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem., 2016, vol. 57, no. 1, p. 146.CrossRefGoogle Scholar
  17. 17.
    Zaeva, A.S., Ivanov, A.V., Gerasimenko, A.V., and Sergienko, V.I., Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, p. 203.CrossRefGoogle Scholar
  18. 18.
    Zaeva, A.S., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2015, vol. 41, no. 10, p. 644.CrossRefGoogle Scholar
  19. 19.
    Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Rodina, T.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 108.CrossRefGoogle Scholar
  20. 20.
    Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Antzutkin, O.N., Russ. J. Inorg. Chem., 2016, vol. 61, no. 6, p. 755.CrossRefGoogle Scholar
  21. 21.
    Ivanov, A.V., Loseva, O.V., Rodina, T.A., et al., Russ. J. Coord. Chem., 2016, vol. 42, no. 2, p. 104.CrossRefGoogle Scholar
  22. 22.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  23. 23.
    APEX2, Madison: Bruker AXS, 2010.Google Scholar
  24. 24.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.CrossRefGoogle Scholar
  25. 25.
    Exarchos, G., Robinson, S.D., and Steed, J.W., Polyhedron, 2001, vol. 20, nos. 24–25, p. 2951.CrossRefGoogle Scholar
  26. 26.
    Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals, London: Cornell Univ., 1960.Google Scholar
  27. 27.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.CrossRefGoogle Scholar
  28. 28.
    Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.CrossRefGoogle Scholar
  29. 29.
    Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.CrossRefGoogle Scholar
  30. 30.
    Olmos, M.E., Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications, Laguna, A., Ed., Weinheim: Wiley, 2008, p. 295.Google Scholar
  31. 31.
    Castineiras, A., Dehnen, S., Fuchs, A., et al., Dalton Trans., 2009, no. 15, p. 2731.CrossRefGoogle Scholar
  32. 32.
    Han, S., Jung, O.-S., and Lee, Y.-A., Transition Met. Chem., 2011, vol. 36, no. 7, p. 691.CrossRefGoogle Scholar
  33. 33.
    Koskinen, L., Jääskeläinen, S., Kalenius, E., et al., Cryst. Growth Des., 2014, vol. 14, no. 4, p. 1989.CrossRefGoogle Scholar
  34. 34.
    Khan, E., Khan, U.A., Badshah, A., et al., J. Mol. Struct., 2014, vol. 1060, p. 150.CrossRefGoogle Scholar
  35. 35.
    Rodina, T.A., Korneeva, E.V., Antzutkin, O.N., and Ivanov, A.V., Spectrochim. Acta, Part A, 2015, vol. 149, p. 881.CrossRefGoogle Scholar
  36. 36.
    Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Handbook in Inorganic Chemistry), Moscow: Khimiya, 1987.Google Scholar
  37. 37.
    Kaushik, N.K., Chattwal, G.R., and Sharma, A.K., J. Therm. Anal., 1983, vol. 26, no. 2, p. 309.CrossRefGoogle Scholar
  38. 38.
    Singhal, S., Sharma, C.L., Garg, A.N., and Chandra, K., Transition Met. Chem., 2001, vol. 26, nos. 1–2, p. 81.CrossRefGoogle Scholar
  39. 39.
    Singhal, S., Garg, A.N., and Chandra, K., J. Alloys Compd., 2007, vol. 428, nos. 1–2, p. 72.CrossRefGoogle Scholar
  40. 40.
    Pastorek, R., Šarha, P., Peterek, T., and Trávnícek, Z., Polyhedron, 2011, vol. 30, no. 17, p. 2795.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. V. Loseva
    • 1
  • T. A. Rodina
    • 2
  • A. V. Gerasimenko
    • 3
  • A. V. Ivanov
    • 1
  1. 1.Institute of Geology and Nature Management, Far East BranchRussian Academy of SciencesBlagoveshchenskRussia
  2. 2.Amur State UniversityBlagoveshchenskRussia
  3. 3.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations