Russian Journal of Coordination Chemistry

, Volume 43, Issue 5, pp 338–344 | Cite as

Two novel coordination polymers: Synthesis, structure, luminescent properties, and selective sensing of Cu2+ and Mn2+ ions

Article

Abstract

Two novel coordination polymers, namely {[Co(Ttac)0.5(1,4-Bib)(H2O)] · H2O}n (I) and {[La(HTtac)2(2H2O)] · H2O}n (II) (H4Ttac = 4,5-di(3'-carboxylphenyl)-phthalic acid, 1,4-Bib = 1,4-bis(1-imidazoly) benzene), have been designed and successfully prepared via hydrothermal process, and characterized by elemental analyses, IR spectroscopy, and single crystal X-ray diffraction (CIF files CCDC nos. 1039298 (I), 1039300 (II)). Structural analysis reveals that the H4Ttac ligands adopt different coordination modes in the as-synthesized I and II, and thus give rise to the targeted coordination polymers with different configurations. It is worth mentioning that, coordination polymer I is assembled from low-dimensional structures into three-dimensional (3D) via π···π stacking interactions, while three-dimensional coordination polymer II is formed by covalent bonds. Luminescent properties of coordination polymer II have been studied at ambient temperature. Significantly, luminescent measurement indicates that coordination polymer II may be acted as potential luminescent recognition sensors towards Cu2+ and Mn2+ ions.

Keywords

hydrothermal synthesis coordination polymers luminescent properties recognition metalorganic frameworks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singh, D. and Nagaraja, C.M., Cryst. Growth Des., 2015, vol. 15, no. 7, p. 3356.CrossRefGoogle Scholar
  2. 2.
    Wang, S.L., Hu, F.L., Zhou, J.Y., et al., Cryst. Growth Des., 2015, vol. 15, no. 8, p. 4087.CrossRefGoogle Scholar
  3. 3.
    Shen, Y., Yang, X.F., Zhu, H.B., et al., Dalton Trans., 2015, vol. 44, no. 33, p. 14741.CrossRefGoogle Scholar
  4. 4.
    Kitagawa, S., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 5415.CrossRefGoogle Scholar
  5. 5.
    Gong, Y.N., Xie, Y.R., Zhong, D.C., et al., Cryst. Growth Des., 2015, vol. 15, no. 7, p. 3119.CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Howarth, A.J., Hupp, J.T., et al., Angew. Chem., 2015, vol. 127, no. 31, p. 9129.CrossRefGoogle Scholar
  7. 7.
    Tobin, G., Comby, S., Zhu, N., et al., Chem. Commun., 2015, vol. 51, no. 68, p. 13313.CrossRefGoogle Scholar
  8. 8.
    Hawes, C.S., Knowles, G.P., Chaffee, A.L., et al., Cryst. Growth Des., 2015, vol. 15, no. 7, p. 3417.CrossRefGoogle Scholar
  9. 9.
    Guillerm, V., Kim, D., Eubank, J.F., et al., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 6141.CrossRefGoogle Scholar
  10. 10.
    Cui, Y., Yue, Y., Qian, G., et al., Chem. Rev., 2011, vol. 112, no. 2, p. 1126.CrossRefGoogle Scholar
  11. 11.
    Chen, D.M., Ma, X.Z., Shi, W., et al., Cryst. Growth Des., 2015, vol. 15, no. 8, p. 3999.CrossRefGoogle Scholar
  12. 12.
    Dias, S.S.P., André, V., Klak, J., et al., Cryst. Growth Des., 2014, vol. 14, no. 7, p. 3398.CrossRefGoogle Scholar
  13. 13.
    Lu, W., Wei, Z., Gu, Z.Y., et al., Chem. Soc. Rev., 2014, vol. 43, no. 16, p. 5561.CrossRefGoogle Scholar
  14. 14.
    Han, M.L., Duan, Y.P., Li, D.S., et al., Dalton Trans., 2014, vol. 43, no. 46, p. 17519.CrossRefGoogle Scholar
  15. 15.
    Tang, S.F., Pan, X.B., Lv, X.X., et al., CrystEngComm, 2013, vol. 15, no. 10, p. 1860.CrossRefGoogle Scholar
  16. 16.
    Tang, R.R., Gu, G.L., and Zhao, Q., Spectrochim. Acta, Part A, 2008, vol. 71, no. 2, p. 371.CrossRefGoogle Scholar
  17. 17.
    Shi, F.N., Cunha-Silva, L., Trindade, T., et al., Cryst. Growth Des., 2009, vol. 9, no. 5, p. 2098.CrossRefGoogle Scholar
  18. 18.
    Li, X.F., Han, Z.B., Cheng, X.N., et al., Inorg. Chem. Commun., 2006, vol. 9, no. 11, p. 1091.CrossRefGoogle Scholar
  19. 19.
    Aghabozorg, H., Ramezanipour, F. Kheirollahi, P.D., et al., Z. Anorg. Allg. Chem., 2006, vol. 632, no. 1, p. 147.CrossRefGoogle Scholar
  20. 20.
    Allendorf, M.D., Bauer, C.A., Bhakta, R.K., et al., Chem. Soc. Rev., 2009, vol. 38, no. 5, p. 1330.CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Yan, Y., Pan, Q., et al., Dalton Trans., 2015, vol. 44, no. 29, p. 13340.CrossRefGoogle Scholar
  22. 22.
    Wang, S., Xiong, S., Wang, Z., et al., Chem. Eur. J., 2011, vol. 17, no. 31, p. 8630.CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Du, P., Liu, Y.Y., et al., Cryst. Growth Des., 2013, vol. 13, no. 11, p. 4781.CrossRefGoogle Scholar
  24. 24.
    Zhang, L.P., Ma, J.F., Yang, J., et al., Cryst. Growth Des., 2009, vol. 9, no. 11, p. 4660.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Henan Key Laboratory of Polyoxometalates, College of Chemistry and Chemical EngineeringHenan UniversityKaifengP.R. China

Personalised recommendations