Advertisement

Russian Journal of Coordination Chemistry

, Volume 43, Issue 5, pp 320–330 | Cite as

Synthesis, characterization, and biological activity of Cd(II) and Mn(II) coordination polymers based on pyridine-2,6-dicarboxylic acid

  • S. E. H. Etaiw
  • M. M. El-Bendary
  • H. Abdelazim
Article

Abstract

The coordination polymers (CPs) {[Cd(Pydc)(H2O)3] · PydcH2} (I) and [Mn(Pydc)(H2O)3] · PydcH2} (II) were obtained by the reaction of CdSO4 · 5H2O or MnCl2 · 4H2O with pyridine-2,6-dicarboxylic acid (PydcH2). The structures of the CPs I and II were characterized by IR, UV-Vis, TGA, and X-ray single crystal analysis (CIF files CCDC nos. 1417757 (I), 1417758 (II)). The network structures of I and II are constructed by an infinite number of discrete binuclear molecules and free PydcH2. The structures of the CPs I and II connected by the extensive H-bonds and π–π stacking, forming a 3D-network. The CPs I and II were screened to test their antimicrobial activities against different species of bacteria and fungi.

Keywords

Cd(II) and Mn(II) coordination polymers pyridine-2,6-dicarboxylic acid spectra antimicrobial activities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., et al., Nature, 2003, vol. 423, p. 705.CrossRefGoogle Scholar
  2. 2.
    Coronado, E. and Espallargas, G.M., Chem. Soc. Rev., 2013, vol. 42, p. 1525.CrossRefGoogle Scholar
  3. 3.
    Pu, L., Acc. Chem. Res., 2012, vol. 45, p. 150.CrossRefGoogle Scholar
  4. 4.
    Bodnarchuk, M.I., Erni, R., Krumeich, F., and Kovalenko, M.V., Nano Lett., 2013, vol. 13, p. 1699.Google Scholar
  5. 5.
    Suh, M.P., Park, H.J., Prasad, T.K., and Lim, D.W., Chem. Rev., 2012, vol. 112, p. 782.CrossRefGoogle Scholar
  6. 6.
    Duriska, M.B., Neville, S.M., Lu, J.-Z., et al., Angew. Chem., Int. Ed., 2009, vol. 48, p. 8919.CrossRefGoogle Scholar
  7. 7.
    Lu, Z.-Z., Zhang, R., Li, Y.-Z., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 4172.CrossRefGoogle Scholar
  8. 8.
    Etaiw, S.E.H. and El-Bendary, M.M., Appl. Catal., B, 2012, vol. 126, p. 326.CrossRefGoogle Scholar
  9. 9.
    Etaiw, S.E.H., Sultan, A.S., and El-Bendary, M.M., J. Organomet. Chem., 2011, vol. 696, p. 1668.CrossRefGoogle Scholar
  10. 10.
    Etaiw, S.E.H. and El-Bendary, M.M., Polyhedron, 2015, vol. 87, p. 383.CrossRefGoogle Scholar
  11. 11.
    Etaiw, S.E.H. and El-Bendary, M.M., Inorg. Chim. Acta, 2015, vol. 435, p. 167.CrossRefGoogle Scholar
  12. 12.
    He, Y.P., Tan, Y.X., and Zhang, J., Cryst. Growth Des., 2014, vol. 14, p. 3493.CrossRefGoogle Scholar
  13. 13.
    Yang, Q.X., Chen, X.Q., Chen, Z.J.Y., et al., Chem. Commun., 2012, vol. 48, p. 10016.CrossRefGoogle Scholar
  14. 14.
    Barman, S., Khutia, A., Koitz, R., et al., J. Mater. Chem. A, 2014, vol. 2, p. 18823.CrossRefGoogle Scholar
  15. 15.
    Wu, H., Yang, J., Su, Z.M., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 11406.CrossRefGoogle Scholar
  16. 16.
    Hu, J.S., Huang, L.F., Yao, X.Q., et al., Inorg. Chem., 2011, vol. 50, p. 2404.CrossRefGoogle Scholar
  17. 17.
    Miao, H., Wang, Y., Cui, Y.M., and Liu, Z.D., Z. Anorg. Allg. Chem., 2014, vol. 640, p. 1514.CrossRefGoogle Scholar
  18. 18.
    Cai, Y.-P._Chen, C.-L., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 8595.CrossRefGoogle Scholar
  19. 19.
    Song, X.-Z., Song, S.-Y., Qin, C., et al., Cryst. Growth Des., 2012, vol. 12, p. 253.CrossRefGoogle Scholar
  20. 20.
    Munakata, M., Wu, L.P., et al., Inorg. Chem., 1997, vol. 36, p. 5416.CrossRefGoogle Scholar
  21. 21.
    Kajiwara, T. and Ito, T., J. Chem. Soc., Dalton Trans., 1998, p. 3351.Google Scholar
  22. 22.
    Kamiyama, A., Noguchi, T., Kajiwara, T., and Ito, T., Angew. Chem., Int. Ed., 2000, vol. 39 p, p. 3130.CrossRefGoogle Scholar
  23. 23.
    Okabe, N. and Oya, N., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2000, vol. 56, p. 1416.CrossRefGoogle Scholar
  24. 24.
    Odoka, M., Kusano, A., and Okabe, N., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, vol. 58, p. m25.CrossRefGoogle Scholar
  25. 25.
    French, F.A., Blanz, E.J., Amaral, J.R.D., and French, D.A., J. Med. Chem., 1970, vol. 13, p. 11179.Google Scholar
  26. 26.
    Serbest, K., Özen, A., Unver, A.Y., et al., J. Mol. Struct., 2009, vol. 922, p. 1.CrossRefGoogle Scholar
  27. 27.
    Powell, J.F., Biochem. J., 1953, vol. 54, p. 205.CrossRefGoogle Scholar
  28. 28.
    Church, B.S. and Halvorson, H., Nature, 1959, vol. 183, p. 124.CrossRefGoogle Scholar
  29. 29.
    Chung, L., Rajan, K.S., Merdinger, E., and Grecz, N., Biophys. J., 1971, vol. 11, p. 469.CrossRefGoogle Scholar
  30. 30.
    Drew, M.G.B., Mattews, R.W., and Walton, R.A., J. Chem. Soc. A, 1970, p. 1405.Google Scholar
  31. 31.
    Schwarzenbach, D., Inorg. Chem., 1970, vol. 9 p, 2391.CrossRefGoogle Scholar
  32. 32.
    Palmer, K.J., Wong, R.Y., and Lewis, J., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, p. 223.CrossRefGoogle Scholar
  33. 33.
    Quaglieri, P.P., Loiseleur, H., and Thomas, G., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1972, vol. 28, p. 2583.CrossRefGoogle Scholar
  34. 34.
    Laine, Â.P., Gourdon, A., and Launay, J.-P., Inorg. Chem., 1995, vol. 34, p. 5129.CrossRefGoogle Scholar
  35. 35.
    Okabe, N. and Oya, N., Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2000, vol. 56, p. 305.CrossRefGoogle Scholar
  36. 36.
    Laine, Â.P., Strahs, A.G., and Dickerson, R.E., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1968, vol. 24, p. 571.CrossRefGoogle Scholar
  37. 37.
    Gourdon, A., Launay, J.-P., and Tuchagues, J.-P., Inorg. Chem., 1995, vol. 34, p. 5150.CrossRefGoogle Scholar
  38. 38.
    Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., et al., J. Iran. Chem. Soc., 2009, vol. 6, p. 55.CrossRefGoogle Scholar
  39. 39.
    Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., et al., J. Iran. Chem. Soc., 2009, vol. 6, p. 373.CrossRefGoogle Scholar
  40. 40.
    Deacon, G.B. and Philips, R.J., Coord. Chem. Rev., 1980, vol. 33, p. 227.CrossRefGoogle Scholar
  41. 41.
    Valeur, B., Molecular Fluorescence Principles and Applications, Weinheim: Wiley-VCH, 2002, p. 59.Google Scholar
  42. 42.
    Jaffé, H.H. and Orchin, M., Theory and Applications of Ultraviolet Spectroscopy, Wiley, 1970.Google Scholar
  43. 43.
    Efthimiadou, E.K., Psomas, G., et al., J. Inorg. Biochem., 2007, vol. 101, p. 525.CrossRefGoogle Scholar
  44. 44.
    Lawrence, P.G., Harold, P.L., and Francis, O.G., Antibiot. Chemother., 1980, vol. 5, p. 1597.Google Scholar
  45. 45.
    Mandal, S.K. and Nag, K., J. Chem. Soc., Dalton Trans., 1983, vol. 11, p. 2429.CrossRefGoogle Scholar
  46. 46.
    Dharmaraj, N., Viswanathamurthi, P., and Natarajan, K., Transition Met. Chem., 2001, vol. 26, p. 105.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. E. H. Etaiw
    • 1
  • M. M. El-Bendary
    • 1
    • 2
  • H. Abdelazim
    • 1
  1. 1.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Chemistry Department, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia

Personalised recommendations