Skip to main content
Log in

Valence-tautomeric adducts of Co(II) diketonates based on annelated di-o-quinones: Computer simulation

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The computer simulation (DFT B3LYP*/6-311++G(d,p)) is performed for the adducts of divalent cobalt diketonates with di-o-quinones in which the quinone rings are separated by the cycloalkane spacers. The isomers containing dianion–diradical forms of the redox-active ligand, the character of exchange between unpaired electrons of which depends on the spacer structure, correspond to the ground states of the considered compounds. Strong antiferromagnetic interactions (J > 400 cm–1) are predicted for the most stable electromers of the adducts of Co(II) bis(chelates) with 9,10-dimethyl-9,10-ethanoanthracene-2,3,6,7(9H,10H)-tetraone, whereas a weak exchange favoring paramagnetism in a wide temperature range is expected for the ground states of the binuclear complexes with the isomeric 5,10-dimethyl-4b,5,9b,10-tetrahydroindeno[2,1-a]indene-2,3,7,8-tetraone spacer. The electromers of the complex with the hexafluoroacetylacetone ligands are characterized by close values of the total energies, due to which the complex becomes a promising object for the development of spin qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leuenberger, M.N. and Loss, D., Nature, 2001, vol. 410, no. 6830, p. 789.

    Article  CAS  Google Scholar 

  2. Troiani, F. and Affronte, M., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3119.

    Article  CAS  Google Scholar 

  3. Aldoshin, S.M., Zenchuk, A.I., Fel’dman, E.B., et al., Russ. Chem. Rev., 2012, vol. 81, no. 2, p. 91.

    Article  CAS  Google Scholar 

  4. Aromí, G., Aguilà, D., Gamez, P., et al., Chem. Soc. Rev., 2012, vol. 41, no. 2, p. 537.

    Article  Google Scholar 

  5. Loss, D. and DiVincenzo, D.P., Phys. Rev. A: At. Mol. Opt. Phys., 1998, vol. 57, no. 1, p. 120.

    Article  CAS  Google Scholar 

  6. Stamp, P.C.E. and Gaita-Arino, A.J., Mater. Chem., 2009, vol. 19, no. 12, p. 1718.

    Article  CAS  Google Scholar 

  7. Timco, G.A., Faust, T.B., Tuna, F., and Winpenny, R.E.P., Chem. Soc. Rev., 2011, vol. 40, no. 6, p. 3067.

    Article  CAS  Google Scholar 

  8. Faust, T.B., Tuna, F., Timco, G.A., et al., Dalton Trans., 2012, vol. 41, no. 44, p. 13626.

    Article  CAS  Google Scholar 

  9. Starikova, A.A., Starikov, A.G., and Minkin, V.I., Russ. J. Coord. Chem., 2015, vol. 41, no. 8, p. 487.

    Article  CAS  Google Scholar 

  10. Buchanan, R.M. and Pierpont, C.G., J. Am. Chem. Soc., 1980, vol. 102, no. 15, p. 4951.

    Article  CAS  Google Scholar 

  11. Evangelio, E. and Ruiz-Molina, D., C. R. Chim., 2008, vol. 11, no. 10, p. 1137.

    Article  CAS  Google Scholar 

  12. Tezgerevska, T., Alley, K.G., and Boskovic, C., Coord. Chem. Rev., 2014, vol. 268, p. 23.

    Article  CAS  Google Scholar 

  13. Minkin, V.I., Starikova, A.A., and Starikov, A.G., Dalton Trans., 2015, vol. 44, no. 4, p. 1982.

    Article  CAS  Google Scholar 

  14. Minkin, V.I., Starikov, A.G., and Starikova, A.A., Dalton Trans., 2015, vol. 44, no. 40, p. 17819.

    Article  CAS  Google Scholar 

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., GAUSSIAN 09. Revision D.01, Wallingford: Gaussian Inc., 2013.

    Google Scholar 

  16. Reiher, M., Salomon, O., and Hess, B.A., Theor. Chem. Acc., 2001, vol. 107, no. 3, p. 48.

    Article  CAS  Google Scholar 

  17. Antipin, M.Yu., Ivakhnenko, E.P., Koshchienko, Yu.V., et al., Russ. Chem. Bull., 2013, vol. 62, no. 8, p. 1744.

    Article  CAS  Google Scholar 

  18. Koval’, V.V., Starikov, A.G., Minyaev, R.M., and Minkin, V.I., Dokl. Chem., 2010, vol. 435, no. 2, p. 319.

    Article  Google Scholar 

  19. Shiota, Y., Sato, D., Juhasz, G., and Yoshizawa, K., J. Phys. Chem. A, 2010, vol. 114, no. 18, p. 5862.

    Article  CAS  Google Scholar 

  20. Starikova, A.A., Starikov, A.G., and Minkin, V.I., Comput. Theor. Chem., 2016, vol. 1076, p. 74.

    Article  CAS  Google Scholar 

  21. Noodleman, L., J. Chem. Phys., 1981, vol. 74, no. 10, p. 5737.

    Article  CAS  Google Scholar 

  22. Yamaguchi, K., Okumura, M., Mori, W., et al., Chem. Phys. Lett., 1993, vol. 210, nos. 1–3, p. 201.

    Article  CAS  Google Scholar 

  23. Pierpont, C.G. and Jung, O.S., Inorg. Chem., 1995, vol. 34, no. 16, p. 4281.

    Article  CAS  Google Scholar 

  24. Caneschi, A., Cornia, A., and Dei, A., Inorg. Chem., 1998, vol. 37, no. 13, p. 3419.

    Article  CAS  Google Scholar 

  25. Dei, A., Feis, A., Poneti, G., and Sorace, L., Inorg. Chim. Acta, 2008, vol. 361, nos. 14–15, p. 3842.

    Article  CAS  Google Scholar 

  26. Minkin, V.I., Starikova, A.A., and Minyaev, R.M., Dalton Trans., 2013, vol. 42, no. 5, p. 1726.

    Article  CAS  Google Scholar 

  27. Bachler, N.V., Olbrich, G., Neese, F., and Wieghardt, K., Inorg. Chem., 2002, vol. 41, no. 16, p. 4179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Additional information

Original Russian Text © A.A. Starikova, A.G. Starikov, V.I. Minkin, 2017, published in Koordinatsionnaya Khimiya, 2017, Vol. 43, No. 4, pp. 195–203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikova, A.A., Starikov, A.G. & Minkin, V.I. Valence-tautomeric adducts of Co(II) diketonates based on annelated di-o-quinones: Computer simulation. Russ J Coord Chem 43, 197–205 (2017). https://doi.org/10.1134/S1070328417040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328417040066

Keywords

Navigation